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Introduction
Extracellular RNAs (exRNAs) in biofluids were described as early as the first half  of  the 20th century (1) 
but underwent a more recent renaissance with the detection of  circulating miRNAs (2). Despite the high 
nuclease activity in biofluids, extracellular miRNAs (ex-miRNAs) remain detectable due to protection by 
tightly bound RNA-binding proteins and/or inclusion into microvesicles (2–5). In recent years, especial-
ly with the advancement of  RNA-seq, an extensive body of  research accumulated regarding the role of  
ex‑miRNAs in a broad range of  medical conditions and cardiovascular diseases, including advanced heart 
failure (6) and myocardial infarction (7).

Plasma or serum ex-miRNA signatures may be remarkably stable over time and informative as bio-
markers, and we recently showed that a unique neuroendocrine ex‑miRNA signature could be followed 
for months in a healthy volunteer (8). However, a general limitation of  ex-miRNAs is the relatively low 
number of  miRNA genes, with only a few members with tissue-specific expression (9). In contrast, the 
number of  mRNA-coding genes in the human genome is at least an order of  magnitude higher (10), 
providing, in theory, a much better tissue and functional resolution for physiological conditions or disease 
states if  captured extracellularly. While RNA-seq potentially offers the most comprehensive interroga-
tion of  extracellular mRNAs (ex-mRNAs) and ex-miRNAs and their changes in abundance, there is a 

Extracellular mRNAs (ex-mRNAs) potentially supersede extracellular miRNAs (ex-miRNAs) and 
other RNA classes as biomarkers. We performed conventional small-RNA-sequencing (sRNA-seq) 
and sRNA-seq with T4 polynucleotide kinase (PNK) end treatment of total extracellular RNAs 
(exRNAs) isolated from serum and platelet-poor EDTA, acid citrate dextrose (ACD), and heparin 
plasma to study the effect on ex-mRNA capture. Compared with conventional sRNA-seq, PNK 
treatment increased the detection of informative ex-mRNAs reads up to 50-fold. The exRNA 
pool was dominated by RNA originating from hematopoietic cells and platelets, with additional 
contribution from the liver. About 60% of the 15- to 42-nt reads originated from the coding 
sequences, in a pattern reminiscent of ribosome profiling. Blood sample type had a considerable 
influence on the exRNA profile. On average approximately 350–1100 distinct ex-mRNA transcripts 
were detected depending on plasma type. In serum, additional transcripts from neutrophils 
and hematopoietic cells increased this number to near 2300. EDTA and ACD plasma showed a 
destabilizing effect on ex‑mRNA and noncoding RNA ribonucleoprotein complexes compared with 
other plasma types. In a proof-of-concept study, we investigated differences between the exRNA 
profiles of patients with acute coronary syndrome and healthy controls. The improved tissue 
resolution of ex‑mRNAs after PNK treatment enabled us to detect a neutrophil signature in ACS 
that escaped detection by ex‑miRNA analysis.
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lack of  robust protocols and several challenges in the capture of  fragmented exRNAs and the analysis 
of  short sequencing reads.

Technical difficulties in exRNA profiling encompass the very low amounts of  RNA in body fluids, 
and the influence of  anticoagulants used for blood collection, increasing the likelihood for batch effects or 
spurious findings (11, 12). The type of  blood sample used for RNA isolation can substantially influence 
the stability of  certain ribonucleoprotein (RNP) complexes and associated RNAs. A striking example of  
differential stability of  RNPs with different anticoagulants is the loss of  5′ transfer RNA (tRNA) fragments 
using magnesium ion–chelating EDTA or citrate salts for blood collection (6, 13). While it seems likely that 
these routinely used chelators for blood collection will effect the stability of  other extracellular RNPs, the 
overall extent to which the sample types influence the exRNA profile remains unknown.

By design, small-RNA-sequencing (sRNA-seq) cDNA protocols enrich for miRNAs, which carry 5′ 
phosphate and 3′ hydroxyl groups. However, in body fluids, other classes of  RNAs, including potentially 
mRNAs, most likely exist as degradation products due to the high nuclease activity (8). RNA degradation 
products commonly possess 5′ OH ends as well as 2′ or 3′ phosphate or 2′,3′ cyclic phosphate termini. 
These termini are incompatible with sRNA-seq, and fragments of  those RNAs will largely escape detec-
tion. T4 polynucleotide kinase (PNK) is a 5′-kinase and 3′-phosphatase (14), and treatment of  RNA by 
PNK rescues adapter ligation to RNA fragments devoid of  the necessary termini. T4 PNK treatment has 
been used for different RNA-seq–based applications, including exRNA studies (15–17). However, an effect 
on ex-mRNA capture has not been shown thus far.

Here, we used a recently published RNA isolation protocol that quantitatively recovers exRNAs (8) and 
combined T4 PNK RNA treatment with sRNA-seq and stringent read annotation criteria to demonstrate 
effective and informative capture of  ex-mRNAs. We investigated blood samples with different commonly 
used anticoagulants to identify confounding factors and finally tested the potential of  ex-mRNAs in a 
proof-of-concept cohort of  patients presenting with an acute coronary syndrome (ACS).

Results
PNK treatment of  exRNA improves the capture of  mRNA fragments by sRNA-seq. To test if  PNK treatment 
improves capture of  ex-mRNA fragments, we performed sRNA-seq comparing untreated with PNK-treat-
ed total exRNA input from the same donors. Different anticoagulants were used to assess their influence 
on the exRNA profile (Figure 1).

Plasma and serum were collected from 6 healthy volunteers. Collection tubes for plasma samples con-
tained the divalent metal ion chelators EDTA and acid citrate dextrose (ACD) or the polyanion heparin. 
All plasma samples were platelet depleted, and total exRNA was recovered using our recently published 
isolation protocol, which preserves RNA integrity and quantitatively recovers exRNA (8). The initially 
isolated total RNA for each donor was split, and half  of  it was treated with PNK. The average RNA 
yield from a 450-μl sample was 12 ng (minimum 7 ng, maximum 21 ng) in serum, 8 ng (minimum 4 ng, 
maximum 13 ng) in EDTA plasma, 9 ng (minimum 4 ng, maximum 14 ng) in ACD plasma, and 13 ng 
(minimum 9 ng, maximum 20 ng) in heparin plasma (P < 0.05 for differences between serum or heparin 
and EDTA/ACD plasma; for details see Supplemental Figure 1A; supplemental material available online 
with this article; https://doi.org/10.1172/jci.insight.127317DS1). Multiplexed sRNA-seq libraries were 
prepared from size-selected 19- to 45-nt RNA using untreated and PNK-treated RNA from each donor 
using barcoding (Figure 1). RNA from the 6 donors was split into 2 libraries, with all 4 sample types from 
the same donor in 1 library, thus resulting in 4 libraries total with matched libraries 1 (untreated) and 2 
(PNK treated) for 3 donors and matched libraries 3 (untreated) and 4 (PNK treated) for the remaining 3 
donors (Figure 1A and Supplemental Data 1).

The length distribution of  adapter-trimmed reads was unexpectedly skewed toward shorter reads, with 
13%–26% of  reads in the untreated samples (libraries 1 and 3) and 26%–41% of  reads in the PNK-treated 
samples less than 19 nt in size and less than 4% (7% for the PNK-treated serum samples) of  reads longer 
than 35 nt in size. Nevertheless, 74%–87% of  reads in the untreated samples and 59%–75% of  reads in the 
PNK-treated samples were within the selected size range of  19–45 nt, and 95% of  all trimmed reads were 
within 12–42 nt. A high proportion of  reads shorter than 20 nt has been previously observed by Turchi-
novich and colleagues (15) and is likely indicative of  substantial degradation of  unprotected RNA in blood. 
Such short reads impose challenges for confident transcript assignment due to multimapping. For conven-
tional sRNA-seq, i.e., miRNA studies, this is minimized by hierarchical mapping and requiring a minimum 
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read length of  16 nt (18). Hierarchical mapping ensures that more abundant RNAs, such as rRNAs and 
tRNAs, take precedence over less abundant classes, such as mRNAs and miRNAs, if  a sequence matches 
to more than one RNA class. To arrive at a comprehensive assessment, we initially retained reads <16 
nt. With that, over 80% of  reads mapped to established classes of  human RNAs and the human genome, 
revealing the expected enrichment for miRNAs in the untreated samples (Figure 1B). The major difference 
after PNK treatment was increased rRNA content. A residual 3%–15% of  reads mapped to the E. coli 
genome and approximately 1% to bacterial expression plasmids and diatoms (Supplemental Data 1). Bac-
terial RNA is a common contaminant in recombinantly produced ligase enzymes used for library prepa-
ration, and residual diatom RNA exists in commercial silica matrices (spin columns) used for nucleic acid 
isolation. In standard RNA-seq applications, which use higher amounts of  input RNA, trace amounts of  
contaminating RNAs are unnoticeable. However, with limited input RNA samples and the use of  amplifi-
cation prior to sequencing, these traces contribute a sizeable fraction of  sequence reads in body fluids (6, 8).

Reads annotated as mRNAs (ex‑mRNA) constituted 6.5%–20% of  total reads, with some enrichment 
after PNK treatment in EDTA and ACD plasma but not in heparin plasma or serum (Figure 1B). Further 
review of  read alignments, however, showed that untreated samples collected more mRNA reads with 1 
or 2 mismatches, i.e., inflating the mRNA read count by inclusion of  low-confidence reads (Supplemental 
Data 2). As expected, reads <15 nt had a high fraction of  multimapping (Supplemental Figure 1B). There-
fore, our final ex-mRNA analysis was restricted to perfectly mapping reads (0 mismatch) 15 nt or longer 
with at most 2 mapping locations. The latter was necessary to account for the identical coding sequences 
(CDS) of  the hemoglobin paralogs HBA1 and HBA2 that otherwise would have been underrepresented.

Using these annotation criteria, PNK treatment unambiguously increased the percentage of  ex‑mRNA 
reads and, even more, the number of  unique transcripts captured. Compared with untreated samples, in 
PNK-treated samples, the mRNA read count increased approximately 4-fold in ACD samples and approxi-
mately 9-fold in all other sample types (Figure 1C). Requiring 5 unique reads per mRNA and donor sample, 
we captured an average of  2313 (minimum 452, maximum 4634), 583 (minimum 162, maximum 1192), 
350 (minimum 75, maximum 625), and 1108 (minimum 591, maximum 1760) distinct mRNA transcripts 
in serum, EDTA plasma, ACD plasma, and heparin plasma samples, respectively. This compared with 
only 46 (minimum 2, maximum 182), 33 (minimum 1, maximum 86), 27 (minimum 5, maximum 70), and 
43 (minimum 0, maximum 140) distinct mRNAs in the corresponding untreated samples (P < 8 × 10–9, 
Wilcoxon rank-sum test), representing a 13- to 50-fold increase.

Each of  the 4 libraries contained 1 water control sample that was carried through the RNA isolation 
process step without (libraries 1 and 3) or followed by PNK treatment (libraries 2 and 4). As expected, these 
samples had a high fraction of  size marker, adapter, and bacterial RNA species. While they did not have 
a notable fraction of  reads annotated as miRNAs (<1%), up to 18% of  reads in the water samples were 
annotated as mRNAs. These sequences were almost exclusively short, multimapping repetitive sequences 
inflating transcript counts for biologically implausible transcripts.

Ex-mRNAs in circulation originate mostly from the CDSs and not UTRs. It has been previously reported 
that ex-mRNAs in cell culture media mostly originate from the 3′ UTR of  mRNA transcripts (17). Review 
of  read alignments in our study, however, indicated that most of  the ex‑mRNA reads originated from the 
transcript CDS, a pattern that was only observable in PNK-treated samples due to better transcript cover-
age. Read distribution and read length were reminiscent of  ribosome-profiling data, which indicated that 
ex-mRNA fragments are ribosome protected and circulate as polysome or monosome complexes. This 
observation was confirmed by a metagene analysis that was, depending on sample type, based on an aver-
age of  12,789–16,486 ex-mRNA transcripts in the PNK-treated samples. This showed that approximately 
60% of  the reads originated from the CDS and approximately 30% from the 3′ UTR (Figure 2).

Anticoagulants have a widespread effect on the exRNA profile. The anticoagulants we studied are the pre-
dominant ones used to collect blood samples in clinical practice and for research purposes. All of  them 
influence blood cells ex vivo (19–21), and heparin may not be removed sufficiently by common extraction 
protocols and as a result interfere with downstream applications (22). This is especially relevant if  patient 
populations are studied that often receive high doses of  heparin as part of  their medical treatment.

We therefore looked at how sample type influenced the exRNA composition of  untreated and 
PNK-treated samples. We noted the previously reported destabilization of  5′ tRNA fragments in EDTA and 
ACD samples (Supplemental Figure 2) (6, 13) and described alterations in miRNA composition between 
serum and platelet-depleted EDTA plasma (12). In a comparison across all groups (analogous to ANOVA), 
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we observed abundant differences for 86 miRNAs in the untreated samples and for 1458 mRNA transcripts 
in the PNK-treated samples among the 3 plasma types and serum (Supplemental Data 3 and 4). Serum 
generally had a higher abundance of  ex‑miRNAs (e.g., miR-223 and -142) and ex‑mRNAs (e.g., S100A8) 
enriched in myeloid cells and platelets. In a gene set analysis, ex-mRNAs abundant in serum were associated 
with inflammation and leukocyte activation, whereas plasma ex-mRNAs were more related to general cel-
lular processes, such as translation (Supplemental Data 5). Although there was a high degree of  similarity 
between the exRNA profiles of  EDTA and ACD plasma (Supplemental Figure 3B), there were distinc-
tive differences as well. For instance, EDTA plasma had increased levels of  erythropoietic transcripts, i.e., 
miR-451 and hemoglobin mRNAs, compared with all other samples. ACD had 3- to 4-fold higher levels 
of  miR-150, a lymphocyte-restricted miRNA, than the other sample types (Supplemental Figure 3A and 
Supplemental Data 3 and 4).

The destabilizing effect of  ACD and EDTA on RNP complexes was not restricted to tRNAs, and also 
affected read coverage signatures of  other RNAs. Human small nuclear RNAs U1 and U2 are approximate-
ly 164 nt and approximately 190 nt, respectively, and assemble with proteins into small nuclear RNPs. Bio-
chemical studies demonstrated that U1 and U2 possess core structures that are relatively resistant to nucle-
ase digestion (23). At high magnesium ion concentrations several U1 domains are protected from nuclease 
digestion, whereas at lower magnesium ion concentrations, i.e., after the addition of  EDTA or similar 

Figure 1. Treatment of total extracellular RNA with T4 polynucleotide kinase followed by small-RNA-sequencing. (A) Total RNA was isolated from 450 
μl serum or platelet-depleted EDTA, acid citrate dextrose (ACD), and heparin plasma from 6 healthy individuals and purified using silica-based spin col-
umns. Half of the RNA was treated with T4 polynucleotide kinase (T4 PNK) and repurified (PNK treated), and multiplexed small-RNA-sequencing (sRNA-
seq) libraries were prepared separately for the untreated (libraries 1 and 3) and PNK-treated RNA (libraries 2 and 4). (B) Differences in read annotation in 
the 4 sample types for untreated RNA and PNK-treated RNA using initial annotation settings (reads 12–42 nt, up to 2 mismatches, multimapping). (C) 
Differences in ex‑mRNA capture between untreated and PNK-treated RNA using final annotation criteria (reads >15 nt, no mismatch and up to 2 mapping 
locations). Box plots show the median and first and third quartiles (bottom and top hinges). Whiskers extend at most ×1.5 interquartile range from the 
hinges; any data outside this are shown as individual outlier points. Shown are results from n = 6 individual samples per condition. 
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chelating reagents to plasma, only the core region remained relatively resistant to digestion. Our sRNA-seq 
data agreed well with these earlier observations (Supplemental Figure 3C). In addition, the coverage of  the 
more protected core region was 4- to 8-fold lower in EDTA and ACD plasma, respectively, than in the other 
two sample types. There was no difference in read coverage patterns for small nuclear RNAs U2, U4, U5, 
and U6 or the large ribosomal subunits, 18S and 28S, between the different sample types.

Hematopoietic cells, platelets, and liver are the major sources of  exRNAs in healthy individuals. We next sought 
to identify sources contributing to the tissue exRNA pool in the physiological state. We generated a polyA 
mRNA-seq tissue atlas comprising major human cell and tissue types and calculated a tissue specificity 
score (TSS) (10) for all of  the 19,828 mRNAs as defined in Ensembl release 88 (Supplemental Data 6). 
Genes restricted to a few tissues or cell types had a TSS greater than 3, e.g., aldolase B (ALDOB) expressed 
in liver and kidney, while classic marker genes like albumin (ALB) or cardiac troponin T (TNNT2) had a 
TSS greater than 4.

To compare the ex‑mRNA profile to the tissue atlas, we considered ex‑mRNAs in the PNK-treated 
samples with at least 5 unique reads in at least 3 of  the 6 donors per sample type and took the union 
of  ex‑mRNAs in all 4 samples types. A total of  3427 ex-mRNAs entered comparative analysis, and, of  
those, 169 had a TSS >3, therefore being most informative regarding tissue of  origin (116 ex‑mRNAs >3 
but <4, 53 ex‑mRNAs >4; Supplemental Data 7). About 30% of  the 169 mRNAs were most abundant 
in neutrophils, 10% in liver, and 5% each in RBCs, platelets, and skeletal muscle. Conversely, when we 
compared the 1000 highest expressed mRNAs for each tissue in the atlas to the 3427 ex-mRNAs, we 
found a much higher fraction of  the top 1000 transcripts from RBCs, platelets, neutrophils, PBMCs, 
and monocytes captured in circulation than from any of  the other tissue (Figures 3 and 4, Supplemental 
Figure 4, and Supplemental Data 8).

Our annotation criteria led to the detection of  certain highly tissue-specific genes from other tissues, 
e.g., MYBPC3 (myocardium), SFTPB (lung), or MIOX (kidney; Supplemental Figure 4) in some serum or 
plasma sample types. However, the underlying reads were repetitive and short and therefore highly sugges-
tive of  annotation artefacts.

In EDTA and ACD plasma, we detected 12%–21% of  the 1000 most highly expressed cellular 
mRNAs among the hematopoietic cells investigated. This percentage increased to 27%–49% in hepa-
rin plasma and 38%–81% in serum. Particularly striking was the difference for neutrophils, for which 
we detected 12%, 17%, 49%, and 81% of  the 1000 most highly expressed transcripts in ACD, EDTA, 

Figure 2. Read distribution of ex‑mRNA reads across the full-length mRNA transcripts. (A and B) Read coverage for the hemoglobin A2 transcript (A) and 
the albumin transcript (B) by sample type for untreated and T4 PNK end-treated samples. Exon boundaries (HBA2: 3 exons, ALB: 15 exons) are indicated 
by alternating intensities of gray, and UTRs are distinguished from CDS by thinner bars. (C) Metagene analysis with relative read coverage (percentage) 
across 5′ UTRs, CDSs, and 3′ UTRs for untreated and PNK-treated samples as well as corresponding data obtained after 100 random simulations (across an 
average of 2342–3500 captured transcripts for untreated samples and an average of 12,789–16,487 captured transcripts for PNK-treated samples, depend-
ing on sample type). Shown are results from n = 6 individual samples per condition.
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heparin, and serum, respectively, as ex‑mRNAs (Figure 4, Supplemental Figure 4, and Supplemental 
Data 8). The increase of  ex‑mRNAs in serum compared with the other samples is likely related to in 
vitro neutrophil degranulation and cell death during coagulation. On the mRNA level, this was much 
more pronounced for neutrophil than platelets transcripts, of  which we detected 35% and 42% of  the 
top 1000 cellular transcripts in heparin plasma and serum, respectively. Although miRNAs have been 
reported as markers for platelet activation (12), our data suggest that neutrophils contribute similarly 
to coagulation-dependent exRNA changes.

In summary, these results indicated that hematopoietic cells, platelets, and the liver are main con-
tributors to the ex-mRNA profile, and, based on our data, there was little support that other solid tissues 
contribute substantially.

RNA end treatment increases the diagnostic potential of  exRNA in disease. To evaluate the clinical poten-
tial of  ex-mRNAs in patients we studied exRNA changes in a pilot cohort of  patients with an ACS (n = 
6) and age- and gender-matched healthy controls (n = 10; Supplemental Data 1 and 9). All patients had 
evidence of  myocardial tissue–damage based on elevated cardiac troponin I levels, a highly sensitive 
and routinely used marker for myocardial damage. Patients with myocardial injury represent a proof-
of-concept cohort, as the myocardium is one of  the few tissues expressing tissue-specific miRNAs 
(myomirs miR-208a, -208b, and -499), which have been shown to be elevated in the circulation of  these 
patients. Routine laboratory parameters measured on the same day were available for all patients and 
controls (Supplemental Data 9 and 10). In comparison with the controls, the ACS group had higher 
white blood cell counts.

Figure 3. Tissue sources of ex‑mRNAs. Heatmap with the top the 821 most abundant ex-mRNAs in circulation for 
untreated and PNK-treated samples (left), together with the corresponding expression in selected cells or tissues 
(right). Selected tissue-specific/enriched mRNAs are labeled together with the tissue specificity score. Shown are 
results from n = 6 individual samples per condition. Tissue and cell RNA-seq data used for the tissue heatmap are 
listed in Supplemental Data 6.
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Because the ACS group received high doses of  heparin before sample collection, all patient and control 
samples were collected in heparin plasma to avoid any biases associated with different anticoagulants, as 
discussed previously herein (6, 12, 13). sRNA-seq libraries were generated from untreated (library 5) and 
PNK-treated (library 6) total RNA (Supplemental Figure 5), each library barcoding the ACS and control 
samples of  the corresponding RNA treatment group. As before, one water sample was included per library; 
however, here the water was added in lieu of  the RNA input at the beginning of  the cDNA preparation and 
was not carried through a mock RNA isolation process.

Unsupervised hierarchical clustering of the calibrator spike-in small RNAs (see Methods) did not separate 
the 2 groups, arguing against any potential bias due to residual heparin in the samples (Supplemental Figure 
6). However, 18 ex‑miRNAs were differentially altered in the untreated samples; 11 were higher and 7 were 
lower in ACS than controls (Figure 5A and Supplemental Data 11). The myocardium-specific miR-208b in the 
ACS group was 17-fold higher than in the controls; the 2 other myocardium-specific miRNAs, miR-208a (FDR 
0.07%) and miR-499 (FDR 0.15%), were elevated 8-fold in ACS. These changes were in line with release due to 
myocardial injury and in magnitude they were similar to what we reported for patients in advanced heart fail-
ure (6) and, again, suggested no heparin-associated bias. Individual myeloid-enriched miRNAs were elevated 
in ACS as well, e.g., miR-223, while platelet miRNAs in general were not changed (Figure 5A).

PNK treatment improved the detection of  distinct ex‑mRNAs 30-fold, with an average of  1124 (min-
imum 47, maximum 4825) unique transcripts in the PNK-treated samples compared with an average of  
38 (minimum 6, maximum 313) in the untreated samples. Differential analysis identified 209 changes for 
ex‑mRNAs; 167 were higher and 42 were lower in ACS than controls. Neutrophil ex‑mRNAs broadly 
increased in ACS (Figure 5B, Supplemental Figure 7, and Supplemental Data 12), while platelet tran-
scripts, including the highly specific PF4 and PPBP, were unchanged between the 2 groups (Figure 5C). 
The top 6 elevated ex‑mRNAs in the ACS group by FDR (Figure 5D) were IFITM2 (4.2-fold, TSS 2.25), 
MGAM (10-fold, TSS 4.3), CXCR2 (4.5-fold, TSS 4.1), H3F3A (3.6-fold, TSS 0.74), GCA (3.8-fold, 
TSS 3.2), and S100A8 (3.7-fold, TSS 3.2), all of  which are highly expressed in neutrophils (Supplemental 
Data 6). The reads of  these neutrophil transcripts mainly mapped to the CDSs (Figure 5E).

Figure 4. Top expressed transcripts from hematopoietic tissues captured in circulation. The 1000 most abundant cellular mRNA transcripts (excluding 
mRNAs encoded on the mitochondrial genome) from the selected cell types that collected 5 unique reads in at least 3 of the 6 donors per sample type 
were considered captured. The captured transcripts (x axis) were ordered in descending order by the tissue specificity score (TSS; y axis). Transcripts with a 
TSS greater than 3 are highlighted in red and listed, space permitting. Shown are results from n = 6 individual samples per condition. Tissue and cell RNA-
seq data used for TSS calculation are listed in Supplemental Data 6.
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In contrast to the capture of  myocardium-specific ex‑miRNAs, we did not detect myocardium-specific 
ex‑mRNAs in circulation.

The exRNA profile of  the water samples did not differ substantially from water samples in libraries 1–4.
Taken together, the improved capture of  ex‑mRNAs by PNK treatment allowed us to detect a neu-

trophil signature in ACS patients that is not detectable based on ex‑miRNAs, demonstrating improved 
tissue-resolution of  ex‑mRNAs in the diseased state.

Discussion
Here, we showed that mRNA fragments in circulation (ex-mRNAs) can be efficiently captured by T4 PNK 
end treatment of  total exRNA followed by sRNA-seq. Ex-mRNAs provide superior tissue and functional 
resolution for most conditions compared with other RNA classes because of  the higher number of  compar-
atively well annotated, highly expressed tissue-restricted transcripts. Tissue-specific ex-miRNAs, in selected 
cases, offer complementary information.

Ex-miRNAs have been widely studied as biomarkers in many types of  diseases and conditions (6, 7, 
24, 25). They perform well in the detection of  tissue damage of  organs with tissue-specific miRNAs, such 
as the liver (miR-122) (26) or the heart (myomirs) (6, 7). Individual miRNAs alone or in combination are 

Figure 5. Changes in ex‑mRNAs and ex‑miRNAs in patients with ACS compared with controls. (A) MA plot of ex-miRNA changes with color coding of miR-
NAs highly expressed in platelets, defined as the top 85% miRNAs. (B and C) MA plots of ex-mRNA changes with color coding highly of expressed neutrophil 
genes (B) or platelet genes (C). Navy blue: highly expressed and FDR >5%; light blue: highly expressed and FDR <5%; red: not highly expressed and FDR 
<5%; gray: all other. Highlighted miRNAs (A) include the myocardium-specific miR-208b; miR-223, which is highly but not specifically expressed in neutro-
phils; and miR-24, which is highly but not specifically expressed in megakaryocytes (platelet precursor). Highlighted mRNAs are selected highly enriched 
neutrophils (B) or platelets (C) transcripts. (D) Heatmap showing altered ex‑mRNAs in the ACS group compared with healthy controls. Selected neutro-
phil-enriched mRNAs are indicated on the right. (E) RNA-seq read coverage of the 523 nt S100A8 transcript in ACS group and healthy controls (downsampled 
to 600,000 reads). Transcript structure indicated at the bottom with the 3 exons in alternating intensities of gray, and the 5′/3′ UTRs as thin bars.

https://doi.org/10.1172/jci.insight.127317


9insight.jci.org      https://doi.org/10.1172/jci.insight.127317

T E C H N I C A L  A D V A N C E

also used for risk prediction for chronic conditions (25), and characteristic ex‑miRNA changes have been 
shown to be stable over months, even in the absence of  detectable illness (8). But the precise tissue source 
or etiology of  such differences based on the ex-miRNA profile alone remain unclear. Many tissues do not 
possess specifically expressed miRNAs, and measurements of  ubiquitously or weakly expressed miRNAs 
in biofluids are prone to misinterpretation.

We looked at patients with ACS as benchmark population to evaluate our analysis of  ex‑mRNAs, 
given the consistently reported elevations of  myomirs in circulation of  patients with otherwise confirmed 
myocardial damage (6, 7). As expected, myomirs were elevated in ACS, but, aside from these changes, few 
alterations were detectable between ACS and healthy controls on the ex‑miRNA level. However, the ACS 
group had a characteristic neutrophil ex‑mRNA signature, i.e., elevated exRNA levels of  neutrophil-en-
riched genes. Although this finding needs validation in larger cohorts and might potentially be confounded 
by the higher leukocyte count in the ACS group, the results are in line with the increasing recognition of  
inflammation and neutrophil activation in atherosclerotic disease. Endothelial damage and neutrophil acti-
vation have been linked to thrombus formation in animal studies (27), and neutrophils in atherosclerotic 
plaques are detectable in vessels from animal models as well as human samples (28). Irrespective of  the rea-
son for the neutrophil signature in the ACS cohort, i.e., an inflammatory response to ACS or due to higher 
neutrophil counts, the results clearly emphasize the superior tissue resolution of  ex-mRNAs compared 
with ex‑miRNAs. The lack of  detectable myocardial ex‑mRNAs in any of  the samples used in this study is 
most likely due to the low-sequencing depth of  ex‑mRNAs caused mainly by large rRNA fractions, but the 
differential stability of  ex‑miRNAs and ex‑mRNA fragments likely contributes (5).

Previous exRNA-seq studies also commented on ex-mRNAs that were detectable by their approaches. 
Yuan et al. (29) studied the exRNA composition of  extracellular vesicles in the plasma of  50 healthy indi-
viduals and 142 cancer patients without RNA end treatment. While in their study the by far most abun-
dant RNAs were miRNAs and Piwi-interacting RNAs, they also detected 1,338 unique mRNAs represent-
ing 2.1% of  all included RNA categories. The 3 most abundant ex‑mRNAs were CCDC9, ST8SIA1, and 
MTRNR2L5. They described 7 ex‑mRNAs associated with aging as well as CDHR1 and PAQR5, associat-
ed with prostate and pancreatic cancer, respectively. Despite some overlap between the ex‑mRNAs detected 
in the study by Yuan et al. and the ones detected in ours, highly abundant ex‑mRNAs in total plasma, such 
as the hemoglobin transcripts or platelet transcripts, were not detected in their cohort. We assume that these 
and other differences are not only due to the fact that they studied a subset of  exRNAs in vesicles but also 
to the lack of  RNA end treatment, which Turchinovich and colleagues noted to be important to improve 
cDNA library preparation from plasma RNA (15). Moreover, differences in results also arise from differenc-
es in the analyses. While most investigators used hierarchical mapping strategies similar to ours, RNA refer-
ence sequences differed and the priorities that the included RNA classes were given in the annotation process 
were often dissimilar. Both may have a substantial influence on the results. For instance, up to 30% of  reads 
using untreated input RNA in our study mapped to the expression plasmid of  Rnl2 ligase, the recombinant 
protein of  which is used for sRNA-seq cDNA library preparation. Omitting this plasmid reference from the 
mapping hierarchy during sequence read alignments resulted in a substantial amount of  plasmid sequences 
aligning perfectly to other RNA classes, including mRNA transcripts, even using our most stringent map-
ping criteria. Wei et al. (17) used T4 PNK treatment in combination with tobacco acid pyrophosphatase 
treatment for exRNA analysis of  cell culture supernatant of  glioblastoma cell cultures. Interestingly, they 
observed that most of  their RNA-seq reads originated from the 3′ UTRs of  mRNAs and not the CDSs. We 
speculate that the differences in transcript coverage between their and our observations are due to different 
sRNA-seq protocols and analyses or reflect the different environments studied.

While our work did not address different mechanisms of  exRNA release or the different compartments of  
exRNAs currently discussed, a few findings suggest that ex-mRNAs and probably a large part of  all exRNA 
circulate within polysome complexes. First, for ex‑mRNAs sequenced with good coverage, i.e., high abun-
dance transcripts, read length (~28 nt) and read distribution across the transcripts with better coverage across 
coding regions were reminiscent of  sequencing data from ribosome-profiling studies (30). Second, the loss of  
5′ tRNA halves in EDTA and ACD samples (6, 13) is consistent with loss of  protection by tRNA-binding 
proteins (31) due to magnesium ion chelation. Chelation of  magnesium ion by EDTA, traditionally used 
experimentally for that purpose (23, 32), and ACD in blood collection tubes will lead to disassembly of  poly-
somes, rendering the associated tRNAs vulnerable to nuclease digestion. The more widespread effect of  RNP 
destabilization after magnesium ion chelation is furthermore evident by loss of  RNA fragments from certain 
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regions of  U1 RNA and, overall, fewer captured transcripts in EDTA and ACD samples. It ultimately remains 
unclear at this point how much of  an effect the different anticoagulants had on the hematopoietic cells ex vivo 
(19–21) and whether they potentially confounded the exRNA composition due to ongoing or changed RNA 
release. But aside from their value to the study in vivo changes of  exRNAs and in the development of  diagnos-
tic applications, the discriminatory value of  ex-mRNAs compared with other RNA classes can also be utilized 
to assess such changes and biases related to blood collection and processing to a greater detail.

The adoption of  ex‑mRNAs and other exRNAs as clinical biomarkers will require quantitative and rea-
sonably fast assays, such as qPCR. However, primer design for short fragments is challenging, and qPCR, 
similar to other assays not based on sequencing, does not easily allow for the verification of  the amplified 
signal (i.e., read sequence). The diminutive amounts of  RNA in body fluids carry a great risk of  introduc-
ing biases, as described here, and such assays will have to be carefully developed. Similar considerations 
will have to be taken into account with different methods or further refinements, e.g., using heparinase 
treatment to reduce possible interference of  heparin with enzymatic reactions or enzymatic rRNA removal.

In conclusion, total exRNA PNK treatment followed by sRNA-seq allows for robust investigation of  
ex‑mRNA changes for biomarker discovery and other studies, but sample collection and analysis strategies 
have to be carefully planned. Future method refinements, such as depletion of  rRNA and tRNA fragments, 
will further increase the potential of  this approach.

Methods

Overall experimental design
sRNAs-seq data from serum and plasma samples were prepared in 2 batches, representing 2 different exper-
iments; batch 1 comprised samples for libraries 1–4, and batch 2 comprised samples for libraries 5 and 6. 
For each batch, total extracellular RNA was isolated in parallel using identical reagent lots, and sRNA-
seq cDNA libraries were prepared in parallel. Each batch was sequenced on 1 flow cell on a HiSeq 2500: 
high-output mode was used for libraries 1–4 and rapid-run mode was used for libraries 5 and 6.

Tissue and cell samples were prepared independently from each other.

Sample procurement
Peripheral vein blood from arm veins (hands or antecubital) was collected from healthy volunteers and from 
patients with ACS at The Rockefeller University and Mannheim University Medical Center, respectively. 
Human tissue samples for bulk mRNA-seq of  myocardium and kidney were obtained from the National 
Disease Research Interchange, and other samples were obtained from biopsies or discarded surgical waste.

Serum and plasma sample processing and platelet depletion
Serum samples were allowed to coagulate before further processing at room temperature; plasma samples 
were processed within 30 minutes of  collection by centrifugation at 2500 g for 15 minutes in the blood 
collection tube, followed by another centrifugation of  the supernatant at the same conditions. The resulting 
supernatant was aliquoted into 500-μl aliquots avoiding the residual pellet, flash-frozen in liquid nitrogen, 
and stored at –80°C until use. Samples were thawed only once.

RNA isolation
Isolation of  total cell-free exRNA. For a detailed protocol, with recipes and catalog numbers, see the sup-
plemental information of  Max et al. (8). All steps were carried out in Eppendorf  LoBind 2 ml tubes 
(catalog 022431048), and samples were collected in G-Tube Snap Cap siliconized microcentrifuge tubes 
(catalog 22179-004). Samples for libraries 1–4 were eluted using Zymo-Spin I columns (Zymo-Research, 
catalog C1003-50); samples for libraries 5 and 6 were eluted using Qiagen MinElute columns (catalog 
74204). Briefly, for exRNA isolation a 450 μl sample was added to 105 μl buffer P (30% v/v sodium 
dodecyl sulfate in RNase-free water, 66 mM Tris-HCl, 19.8 mM EDTA, freshly added β-mercaptoeth-
anol to 2% v/v) preheated to 60°C in a dry block incubator (ThermoMixer, Eppendorf). Buffer P was 
supplemented with 2 attomole each of  the 10 calibrator ribonucleotides of  cocktail 1 (see Supplemental 
Data 13). The tube was immediately mixed for 3 seconds at 1200 rpm, followed by the addition of  28 
μl proteinase K solution (2.1 mg/ml proteinase K, 5.4% v/v glycerol, 3.2 mM CaCl2, 5.4 mM Tris-HCl, 
4.5 M NaCl), and incubation for 10 minutes at 550 rpm. After that, 513 μl buffer ED2 (80% v/v acidic 
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phenol saturated with 0.1 M citrate buffer at pH 4.3, 1.6 M guanidinium-isothiocyanate, 37.4 mM 
sodium citrate, 0.4% w/v sarcosyl, freshly added β-mercaptoethanol to 0.35% v/v) was added and the 
tubes mixed for 30 seconds at 1400 rpm. The samples were centrifuged for 30 seconds at 50 g and room 
temperature to collect the fluid and transferred to a ThermoMixer set to 10°C. For RNA extraction, 103 
μl chloroform was added to each tube, and the samples mixed for 30 seconds at 10°C and 1400 rpm, fol-
lowed by centrifugation at 16,000 g and 4°C in a microcentrifuge. The upper aqueous phase (600 μl) was 
transferred to 2-ml siliconized tubes containing 1200 μl buffer VB2G (98.2% v/v isopropanol, 7.2 mM 
MgCl2, 2.4 mM CaCl2, 1 M guanidinium-isothiocyanate, 5 mM TCEP) and inverted 5 times. The mixed 
samples were then applied to silica spin columns in a vacuum manifold and washed twice with 900 μl 
buffer EWL (70% v/v isopropanol in RNase-free water, 0.4 M GITC, 3 mM CaCl2, 3 mM MgCl2, 15 
mM NaCl, 0.3% Triton-X 100, 5 mM TCEP), once with 900 μl 100% ethanol, and once with 500 μl 80% 
ethanol (in RNase-free water). The spin columns were then spun at 16,000 g and room temperature for 
5 minutes to dry the matrix and transferred to a new 1.5-ml siliconized tube, followed by the addition 
of  20 μl RNase-free water and incubation for 1 minute. The samples were eluted by centrifugation at 
16,000 g and room temperature for 1 minute, resulting in about 18 μl untreated total exRNA. The iso-
lated RNA was stored at –80°C until usage.

exRNA yield was measured using the Qubit RNA HS assay with modifications (for details see Supple-
mental Information).

Isolation of  cell and tissue RNAs. Cellular or tissue total RNA was extracted using TRIzol with an addi-
tional phenol/chloroform extraction step and concentrated by alcohol precipitation or purified using the 
miRNeasy kit (Qiagen) according to the manufacturer’s instructions. Total RNA from cells and tissues was 
quantified on a NanoDrop UV spectrophotometer, and the RNA integrity was determined on an Agilent 
Bioanalyzer 2100 with Agilent RNA 6000 Pico Chips.

PNK treatment of total exRNA
To half  of  the eluted exRNA, i.e., 14 μl, we added 6 μl of  a master mix corresponding to the equivalent 
of  2 μl ×10 T4 PNK buffer, 2 μl 10 mM ATP, 1 μl RNase-free water, and 1 μl T4 PNK (NEB, catalog 
M0201S) for a final reaction volume of  20 μl in a 1.5 ml siliconized microcentrifuge tube. The reaction 
was incubated for 30 minutes at 37°C followed by the addition of  40 μl buffer VB2G (for composition 
see above) and reapplied to the same silica column used for the initial purification. The column was 
washed twice with 900 μl buffer EWL (for composition see above), once with 900 μl 100% ethanol, and 
once with 500 μl 80% ethanol. The column was then placed in a collection tube and spun at 13,000 rpm 
and room temperature for 5 minutes to dry the silica matrix. The silica column was then transferred 
to a new siliconized 1.5-ml tube, 15 μl RNase-free water was applied to the column, and the samples 
were incubated for 1 minute and finally centrifuged at 13,000 rpm and room temperature for 1 minute 
to elute the PNK-treated RNA. This yielded approximately 13 μl, and 8.5 μl was used for sRNA-seq 
cDNA library preparation.

RNA-seq
sRNA-seq cDNA library preparation from the serum and plasma samples to profile exRNAs was done as 
described previously (33) using 8.5 μl untreated or PNK-treated RNA with size selection from 19 to 45 nt. 
Tissue and cell RNA-seq for comparison with the exRNA profile was done using the Illumina Stranded 
mRNA-seq TruSeq protocol following the manufacturer’s instructions. All sequencing was done in the 
Genomics Core Facility at The Rockefeller University. For details, see Supplemental Information. The raw 
data for all newly generated sRNA-seq and cellular mRNA-seq libraries have been deposited in NCBI’s 
Sequence Read Archive (bioproject PRJNA474043).

Bioinformatics analysis
Read mapping and annotation. Read processing and annotation for sRNA-seq of  serum and plasma samples 
was done as described previously (18), with modifications for PNK-treated samples. Long RNA-seq reads 
from tissues or cells were aligned to the human genome build 38 using the STAR aligner version 2.0.4j 
(34) and quantified using the featureCounts version 1.5.1 (35) program based on Ensembl release 88. For 
details, see Supplemental Information.
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Clinical laboratory parameters
Standard clinical laboratory assays were performed by the Central Laboratories of  the University Medical 
Centre Mannheim, Mannheim, Germany, and Memorial Sloan Kettering Cancer Center, New York, New 
York, USA. For details, please see Supplemental Data 9 and 10.

Metagene analysis
To determine if  the mRNA read distribution was biased toward certain transcript regions, i.e., 5′ UTR, 
CDS, and 3′ UTR, we compared the experimental data with 100 random simulations. From the reference 
transcriptome, we only considered mRNA transcripts with UTRs 15 nt or longer (subset transcriptome), 
and we only included ex‑mRNA reads 15 nt or longer without mismatch and up to 2 mapping locations 
to the subset transcriptome. Reads from each subsample (i.e., 1–6) per sample type were mapped using the 
Bowtie aligner (version 1.2.1, for details see Supplemental Information).

The mapped reads for each region per distinct transcript were tallied and normalized by region length 
and averaged across all transcripts. Finally, the transcript regions were scaled to 100%. For the simulation, 
the transcript region mapping positions of  the previously mapped reads were randomly shuffled and count-
ed as above. This simulation was repeated 100 times and the results were averaged.

TSS
A TSS was calculated as the difference between the maximal possible information content and the Shan-
non entropy (10).

    (Equation 1)

where N is the number of  samples and pi (relative gene expression) is defined as follows:

    (Equation 2),
where TPM represents transcripts per million.

In this study, we used 25 tissue and cell samples for comparison with the exRNA profile, therefore the 
maximum possible TSS was log2(25) = 4.64. For details on the included samples, see Supplemental Data 6. 
The TSS was calculated in the R language.

Statistics
Analysis of  RNA-seq data. Differential analysis of  miRNA and mRNA changes was done with the Biocon-
ductor package edgeR (version 3.17.5) in the R statistical language version 3.5.1 (36). We used edgeR’s 
quasilikelihood (QL) framework (37, 38) to fit a generalized linear model comparing the conditions of  
interest. The QL dispersion distribution was estimated robustly, other parameters were kept at their default 
setting. miRNAs or mRNAs with fewer than 1 and 0.5 counts per million, respectively, in the number of  
samples comprising the smallest group for each comparison were excluded from the differential analysis 
and all downstream analyses.

Gene set analysis based on curated gene sets (C2), as defined in the Broad Institute’s Molecular Signa-
tures Database (MSigDB, version 5.1), comparing the 4 different sample types (EDTA, ACD, and heparin 
plasma, and serum) used in libraries 1–4 was done using the mroast function of  the Bioconductor package 
edgeR (39). Gene set analysis was based on the same edgeR object used for the differential analysis. The 
MSigDB C2 gene set was downloaded from the Walter and Eliza Hall Institute (http://bioinf.wehi.edu.
au/software/MSigDB/), where gene sets are provided as “rdata” files. The original Entrez Gene IDs in the 
rdata files were mapped to Ensembl Gene IDs to match our annotation. Finally, gene sets containing the 
terms “ribosome,” “translation,” or “inflammation” were used as input for the analysis. An FDR of  <5% 
was used as a cutoff.

Other statistical analysis. Differences in the number of  captured transcripts between untreated and 
PNK-treated samples were tested using the Wilcoxon test. Differences between clinical variables, as indi-
cated in the text, were tested using the 2-tailed t test for normally distributed values and Kruskal-Wallis for 
data with nonnormal distribution. Differences in the RNA yield of  the 4 different sample types were tested 
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by fitting a linear fixed-effect model with Tukey’s post-hoc test. All analysis was done in R (for details see 
Supplemental Information). P < 0.05 was considered significant.
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Faculty Mannheim, University of  Heidelberg; the Friedrich-Alexander-Universität Erlangen-Nuremberg, 
Erlangen, Germany; and the Columbia University Medical Center. Written informed consent was received 
from all participating human subjects.
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