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Introduction
The observation that immune-compromised individuals are more susceptible to developing cancer has led 
to the current models of  immunosurveillance (1, 2). CD8+ T cells have been determined to be an immune 
effector population responsible for eliminating nascent, emerging tumors, thereby preventing cancer (3–5); 
in their absence, such as in Rag-deficient mice, multiple and frequent tumors emerge. Here we show that 
CD91, a receptor expressed on antigen-presenting cells (APCs), is similarly critical for efficient immuno-
surveillance of  tumors.

The realization that most tumor rejection antigens are unique and derived from mutated proteins 
(6–9) predicts that the quantity of  antigen available for cross-presentation in nascent, emerging tumors, is 
minute and is insufficient for cross-priming of  T cell responses (10, 11) by current described pathways (12). 
Here we show that CD91 (13, 14) provides an essential and highly efficient conduit for cross-presentation 
of  tumor antigens to T cells, and this pathway is necessary for mounting successful immune responses 
for surveillance of  tumors. We found that mice lacking CD91 expression in DCs are more susceptible to 
development of  chemically induced tumors compared with WT mice. Early effector immune responses 
were underdeveloped in these mice and enabled emergence of  tumors expressing neo-antigens with a 
higher overall differential aggretope index. Furthermore, we show that polymorphisms in the CD91 gene 
that affect CD91-ligand interactions influence immune responses in patients with lung squamous cell car-
cinomas and skin cutaneous melanomas. Given that CD91 is also involved in activating NK cell responses 
(15), activating DCs to produce costimulation (16, 17), and priming T cells (17), our results begin to 
explain how effector immune responses to nascent, emerging tumors are developed.

Results
CD91 on DCs is necessary for antitumor immunity. Mice with a deficiency in CD91 expression in DCs 
(CD91fl/flCD11cCre) were created (Figure 1A), fully phenotyped, and had a normal hematopoietic com-
partment (18). CD91fl/flCD11cCre mice or their controls (CD91fl/fl) can generate normal Th1 responses 

The immune system detects aberrant, premalignant cells and eliminates them before the 
development of cancer. Immune cells, including T cells, have been shown to be critical components 
in eradicating these aberrant cells, and when absent in the host, incidence of cancer increases. 
Here, we show that CD91, a receptor expressed on antigen-presenting cells, is required for priming 
immune responses to nascent, emerging tumors. In the absence of CD91, effector immune 
responses are subdued, and tumor incidence and progression are amplified. We also show that, 
consequently, tumors that arise in the absence of CD91 express neo-epitopes with indices that are 
indicative of greater immunogenicity. Polymorphisms in human CD91 that are expected to affect 
ligand binding are shown to influence antitumor immune responses in cancer patients. This study 
presents a molecular mechanism for priming immune responses to nascent, emerging tumors that 
becomes a predictor of cancer susceptibility and progression.
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when immunized with a bolus of  antigens in the form of  peptides emulsified in complete Freund’s 
adjuvant (18). The CD91fl/fl control mice (which are floxed but without Cre expression) are immunolog-
ically indistinguishable from C57BL/6 mice by all criteria we have tested, indicating the floxed CD91 
gene by itself  does not affect APCs. However, CD91fl/flCD11cCre mice, and APCs derived from them, 
are deficient in cross-presentation (18) when antigen loads are low and, essentially, approaching phys-
iological ranges. As a result, CD91fl/flCD11cCre mice fail to mount Th1 immunity to implanted tumors, 
allowing tumors to grow at an enhanced rate compared with CD91-sufficient mice. Age-matched 
CD91fl/flCD11cCre and CD91fl/fl mice were injected subcutaneously with 200 μg of  methylcholantrene 
(MCA), a chemical carcinogen, and tumor development was monitored. CD91fl/flCD11cCre mice devel-
oped tumors earlier than CD91fl/fl mice and with greater frequency (P < 0.0004). After 16 weeks, 85% 
of  CD91fl/flCD11cCre mice had developed tumors while only 20% of  CD91fl/fl mice had tumors (Figure 
1B). Immunodeficient mice with a targeted disruption of  the recombination activating gene 2 (RAG2) 
lack B, T, and NKT cells and were incorporated into this experiment as a positive control. Rag2–/– mice 
developed tumors at the same time as CD91fl/flCD11cCre mice, but tumor incidence was higher; 95% of  
Rag2–/– mice developed tumors by week 16. Tumors that formed in CD91fl/flCD11cCre mice grew at a 
significantly faster rate than tumors in CD91fl/fl mice (P < 0.0004) (Figure 1C). Statistically, there was 
no difference in growth rate of  tumors in CD91fl/flCD11cCre versus Rag2–/– mice.

Immune effector responses are diminished in the absence of  CD91. CD91 expressed on DCs is involved in 
activation of  DCs and cross-priming of  T cells (13–15, 19). We postulated that CD91fl/flCD11cCre mice fail 
to mount sufficient immunity against the nascent, emerging tumors, hence the increased tumor incidence 
and enhanced growth compared with CD91fl/fl mice. We tested this by phenotyping the immune infiltrates in 
tumors that developed in CD91fl/fl and CD91fl/flCD11cCre mice, with a focus on T cells and NK cells, which 
are the effectors responsible for tumor surveillance and which do not express CD91 (15). The analysis was 
performed on the earliest premalignant stage (at 2 weeks and before palpable tumors), after development of  
palpable tumors (9 weeks), and after development of  late-stage tumors (18 weeks). CD3+ cells infiltrating the 
site of  pathology were significantly decreased at 2 weeks in CD91fl/flCD11cCre mice compared with CD91fl/fl  
mice (P < 0.05) (Figure 2A). At this time point there was also a notable decrease in NK cells (P = 0.059) 
(Figure 2B). Even though this is a significant observation, the power of  the data is, however, underrepresented 
because we noted that only a few of  the CD91fl/fl mice (25%) went on to develop tumors compared with 
85% of  the CD91fl/flCD11cCre mice (Figure 1). These differences were not observed at later time points when 
tumors were large and antigen dose was presumably greater (Figure 2, E, F, I, and J). We observed a significant 
decrease in the CD11b and CD11c (macrophage/DC) population in CD91fl/flCD11cCre mice compared with 
CD91fl/fl mice at 2 weeks (P < 0.05) (Figure 2C), but not at 9 or 18 weeks (Figure 2, G and K), highlighting 
an additional role for CD91 in recruitment of  APCs to the tumor site (20). No significant differences were 
observed in the Gr1+Ly6C+ populations, which would be inclusive of  granulocytes at any examined time 
point (Figure 2, D, H, and L). Overall, there was no significant difference in total immune cell (CD45+) or 
select lymphocyte (CD3+ plus NK1.1+) populations between the 2 groups at any time point (Figure 2, M 
and N). Flow cytometry data were also analyzed using the Cyt tool in MATLAB. L1 distance was used to 
calculate the difference in marker distribution between data sets for each time point in the 2 groups from 
MFI distribution plots. Distributions for the markers SSC, CD3, CD4, CD8, NK1.1, CD11b, Gr1, and 
Ly6C were analyzed within the entire CD45+ population to determine any differences present in a system, 
which restricted experimenter bias. Samples from CD91fl/flCD11cCre mice were set as the reference group, 
and changes were calculated based on the difference of  the CD91fl/fl sample distribution from the CD91fl/fl 

CD11cCre samples. Positive L1 markers for cytotoxic cells (CD8, NK1.1) are confirmatory of  differences 
between tumor infiltrates from CD91fl/flCD11cCre and CD91fl/fl mice at the 2-week time point (Figure 2O). 
Interestingly, differential expression of  Gr1 was observed between tumors from the 2 groups of  mice, which 
is reflective of  the granulocyte or myeloid derived suppressor cell (MDSC) population. These data exhibit 
the low effector immune populations present in tumors emerging in CD91fl/flCD11cCre mice and suggest an 
additional role for CD91 in myeloid populations.

Tumors emerge and evolve with high antigenicity in the absence of  CD91 on DCs. T cells exert their anti-
tumor activity by recognizing tumor-specific antigens displayed by MHC molecules. Although many 
neo-antigens derived from somatic mutations can be identified in tumors, only a small subset of  them 
serve as tumor rejection antigens. We examined neo-antigens arising in tumors in our study to qualify the 
neo-antigens responsible for rejection. Genomic DNA from tumors that arose each in CD91fl/flCD11cCre 
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(n = 6) or CD91fl/fl (n = 7) mice were obtained and libraries prepared and subjected to whole- exome 
sequencing (Supplemental Table 1; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.127239DS1). No differences in the total number of  single nucleotide variations 
(SNVs) between the 2 groups were observed (Figure 3A). For each nonsynonymous somatic muta-
tion, we used NetMHC 4.0 to compute the predicted binding affinity of  each 8-, 9-, 10-, and 11-mer–
mutated peptide for the H-2-Kb and H-2-Db alleles (with amino acids flanking the mutation). There 
was no difference in total number of  predicted mutated peptides between the 2 groups (Figure 3B).  

Figure 1. Lack of CD91 on DCs abrogates immunosurveillance of cancer. (A) Schematic for generating mice with a 
deficiency of CD91 in DCs. (B) Mice deficient in CD91 expression in CD11c cells (CD91fl/flCD11cCre, n = 13) were inoculated 
with a single dose of MCA s.c. WT littermates (CD91fl/fl, n = 15) or Rag2–/– (n = 15) mice were similarly inoculated. Mice 
were monitored 3 times a week for the appearance of palpable tumors. Tumor incidence is identified as tumors greater 
than 2 mm in diameter in any axis. P values were obtained by Gehan-Breslow-Wilcoxon text. (C) Tumors that grew in 
any mice (n = 11, 4, and 14 for CD91fl/flCD11cCre, CD91fl/fl, and Rag2–/– mice, respectively) were measured. Growth curves 
for individual mice are shown in gray with the same group symbol. P values were obtained by 1-way ANOVA analysis of 
comparisons of area under the curve for each group. **P < 0.01, ***P < 0.001.
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Figure 2. Lack of CD91 on DCs prevents priming of effector responses to emerging tumors. Mice were injected with 200 μg MCA s.c. The injection site 
was harvested 2 weeks later (A–D and M–O) or the palpable tumor 9 and 18 weeks later (E–L and M–O) and analyzed by flow cytometry. Frequencies of 
CD3+ cells (A, E, and I), CD3–NK1.1+ cells (B, F, and J), and CD11b+ and CD11c+ cells (C, G, and K) were measured. (D, H, and L) Remaining CD11b–CD11c– cells 
were further separated into populations that were either Ly6C+ or Gr1+. Each circle represents samples from a single mouse. The error bars depict standard 
deviation. The bar predicts the median. The length of the box represents the interquartile range. (M and N) The frequency of leukocytes (CD45+ cells) 
within the tumor was determined at each time point (M), as well as the frequency of lymphocytes (CD3+ and NK1.1+) among the CD45+ cells (N). (O) Flow 
cytometry (FCS) data were analyzed via unsupervised approaches using the MATLAB tool Cyt. The L1 statistical differences between the MFI distribution 
of the indicated markers on CD45+ cells were determined. The data are reported so that distributions derived from CD91fl/flCD11cCre mice are the reference 
population, and the difference calculated is the change in the CD91fl/fl mice distribution from the reference. Analyses were done on n = 6 mice/group, and 
statistical significance was determined by Student’s 2-tailed t test.
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We then classified mutated peptides according to IC50 as high binders (IC50 < 500), poor binders (IC50 
< 1000), or unlikely binders (IC50 < 5000) to MHC as measured in vitro. We observed no differences in 
the number of  mutant peptides from CD91fl/flCD11cCre mouse– or CD91fl/fl mouse–derived tumors at 
any threshold of  IC50 (Figure 3, C–E). These data suggest that immune recognition of  nascent tumors 
was not based on peptides with in vitro defined high affinity for MHC I, called the classically defined 
neo-epitopes, as is routinely done (21). This observation held true when we separated the peptides into 
individual Db and Kb alleles (data not shown).

Differential aggretope index (DAI) is a measure of  the differential binding affinity between the WT 
and corresponding mutated peptides and has emerged as a vital determinant for T cell recognition of  
novel cancer neo-peptides and identification of  tumor rejection antigens (22). Mutant peptides with 
high DAI are targeted by T cell immunity, leading to tumor rejection (22–24). The average DAI for Db 
and Kb binding peptides was significantly higher in the CD91fl/flCD11cCre-derived tumors compared 
with CD91fl/fl-  derived tumors (Figure 3F). The difference in DAI between the 2 groups was not present 
when only high-affinity peptides (IC50 < 500) were analyzed (Figure 3G), indicating that many poor 
binders (IC50 > 500) were being targeted by the immune system and in fact may be the mutated peptide 
population that is most responsible for tumor surveillance. Mutant peptides were then ranked according 
to their DAI for association with Db and Kb. Tumors that developed in CD91fl/flCD11cCre mice expressed 
significantly more mutated peptides with a DAI greater than 7 than tumors from CD91fl/fl mice (Figure 
3H). This difference was not present in mutated peptides with DAI less than 7. To confirm the evolution 
of  tumors with high DAI in CD91fl/flCD11cCre (H-2b) mice, we examined DAI for the same mutated 
peptides in association with unexpressed H-2d alleles. There was no difference in DAI between tumors 
that developed in CD91fl/fl or CD91fl/flCD11cCre mice when association of  mutated peptides with Dd or 
Kd MHC alleles was examined (Figure 3I). These results show that T cells survey emerging tumors by 
targeting neo-antigens with high DAI, and not necessarily by targeting neo-antigens that bind expressed 
MHC with high affinity, and eliminate these tumors. In CD91-deficient mice, a lack of  infiltrating T 
cells allows tumors expressing neo-antigens with higher DAI to emerge.

Polymorphisms in CD91 influence immunity and cancer progression. Given the importance of  CD91 in 
immunosurveillance of  tumors in our murine model and the better overall survival of  advanced mela-
noma patients with high CD91 expression in monocytes (25), we postulated that SNVs in human CD91 
that affect ligand (HSP) binding could modulate cross-presentation of  tumor neo-antigens, cross-priming 
T cell responses and thus the overall effector immune response to tumors. We constructed an in silico 
analysis pipeline combining several tools allowing for mass testing of  large volumes of  publicly available 
SNV data to predict novel SNVs with high impact on CD91 binding by immunogenic HSPs. We harvested 
24,101 human SNVs from National Center for Biotechnology Information (NCBI) dbSNP and filtered for 
exonal missense SNVs resulting in amino acid mutations that were physiochemically different from WT. 
Our criteria produced 1233 candidate SNVs distributed across all 89 exons of  the CD91 protein sequence 
(Figure 4A). Candidate SNVs were further processed through 2 independent deleterious prediction algo-
rithms, SIFT and PolyPhen2, to predict SNV impact on protein product stability and function. Of  these, 
402 “high-impact” SNVs were predicted to be deleterious or damaging by both algorithms, with 250 SNVs 
located in ligand binding domains (I-IV) and 300 SNVs residing in inter–binding domain spaces (2–3, 3–4, 
and 4 to C-terminus) (Supplemental Table 2). All SNVs were individually incorporated into CD91 amino 
acid sequences and sent through a stability change prediction meta-server, iStable, to determine their influ-
ence on CD91 structure (Supplemental Table 2). Large changes in ΔΔG value depict high impact (negative 
and positive values representing increased or decreased stability, respectively) on stability of  CD91 com-
pared with WT. All ΔΔG stability values were normalized to enable cross-region comparison, and results 
were visualized using R packages ggplot2 and manhattanly (Figure 4B). Multiple SNVs were shown to 
have significant predicted impact on CD91 stability.

Next, we modeled docking of  the immunogenic HSP paralogs, gp96 and hsp90, with CD91 in the 
presence or absence of  individual SNVs residing in ligand binding domains. Several high-impact SNVs 
were captured that significantly increased or decreased the fold change in docking energy of  CD91 with 
HSP (Figure 4C). No overlap was observed between the SNVs predicted for large ΔΔG impact on CD91 
stability (Figure 4B) and those SNVs predicted for large ΔΔG impact on HSP-CD91 docking (Supplemen-
tal Figure 1); thus ΔΔG docking energy for each SNV will have to be individually determined for other 
CD91 ligands that are immunogenic (14, 26).
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We examined patient samples deposited in the Genomic Data Common (GDC) portal for the presence of  
CD91 SNV and its impact on CD8+ T cell representation in tumors as measured by RNA sequencing (RNA-
Seq). We first analyzed patients with lung squamous cell carcinoma. CD91 SNVs at positions 105, 639, 2623, 
and 3504 (black arrows in Figure 4C) that had a high-impact +/–ΔΔG docking to HSP appeared individually 
in 4 patients. SNV 105 had a +ΔΔG docking impact (worse binding to HSP) while SNVs 639, 2623, and 
3504 had –ΔΔG docking impact (better binding to HSP). Patients with a –ΔΔG (SNVs 639, 2623, and 3504) 
had higher CD8+ T cell infiltrates in their tumors (average fragments per kilobase of  transcript per million 
mapped reads [FPKM] = 15.4) compared with the patient with a +ΔΔG (SNV 105), who had low CD8+ T 
cell infiltrates (FPKM = 1.3) (Figure 4D). We next examined additional CD91 SNVs with high +/–ΔΔG 
docking impact that were found in patients with skin cutaneous melanoma (red arrows in Figure 4C). SNVs 
at positions 539, 978, and 3581 (all –ΔΔG) correlated with increased levels of  CD8+ T cells found in tumors 
(average FPKM = 2.48) compared with the patient tumor with +ΔΔG (SNV 3308, FPKM = 0.1) (Figure 4E). 
However, a patient outlier (SNV 978) was observed, with –ΔΔG but no observable increase in CD8+ T cell 
tumor infiltrate, adding weight to the importance of  additional factors that influence T cell infiltration.

Discussion
The direct and comprehensive implication of  CD91 in immunosurveillance of  nascent, emerging tumors 
yielded several important conclusions. First, T cell recognition of  nascent tumors occurs via neo-antigen 
peptides with the highest DAI in association with expressed MHC I. These peptides are the tumor rejection 
antigens (22), are unique to each tumor, and are not necessarily those with highest MHC-binding affinity as 

Figure 3. CD91-mediated immunity to nascent tumors is fixated on neo-epitopes with high differential aggretope index. Tumors induced with MCA in 
CD91fl/flCD11cCre and CD91fl/fl mice were harvested and analyzed by whole-exome sequencing. (A) Total number of all SNVs derived from tumors in either 
group. (B) The total number of 8-, 9-, 10-, and 11-mer–mutated peptides spanning the mutation and predicted from each SNV. (C–E) The number of mutated 
peptides with the indicated half maximal inhibitory concentration (IC50) threshold. (F) The average differential aggretope index (DAI), which measures the 
differential binding affinity between the WT and corresponding mutated peptides, derived from all mutated peptides for the H-2-Kb or H-2-Db MHC allele. 
(G) The average DAI for only mutated peptides with high affinity for H-2-Kb or H-2-Db MHC binding (IC50 < 500). The box plots depict the minimum and 
maximum values (whiskers), the upper and lower quartiles, and the median. The length of the box represents the interquartile range. (H and I) The number 
of peptides with indicated maximum DAI for H-2b (H) or H-2d (I). Statistical significance was determined by Student’s 2-tailed t test. *P < 0.05.
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currently defined by in vitro methods. In the absence of  CD91, which prevents DCs from cross-presenting 
HSP-chaperoned peptides (13, 14, 19), tumors with high DAI emerge. The current definition of  what consti-
tutes an immunologically relevant tumor rejection antigen is mired in assigning an IC50 score to neo-epitopes, 
which is based on an in vitro competition assay of  peptide binding to MHC (27). As discussed elsewhere, 
there are numerous deficiencies and exceptions to this definition both in mouse models of  cancer and in the 
clinical setting (28). It is therefore not surprising that we observe no immunological selection of  neo-epitopes 
based on the IC50 score at any cutoff. Rather we observe immune selection centered on those epitopes exhib-
iting a high DAI, an index that has emerged as a more accurate predictor of  tumor rejection antigens (22–24). 
Second, cross-priming of  immune responses by HSP-chaperoned peptide complexes released from tumor 
cells attends to 2 conundrums of  the current immunosurveillance model; first, the efficiency of  cross-presen-
tation of  antigens through the HSP-CD91 pathway addresses the vast disparity in antigen amount used in pre-
viously described cross-presentation systems and that which occurs in nascent tumors in vivo (10, 11), at early 
time points of  tumorigenesis when T cell responses can be easily measurable (29–31). The second conclusion 

Figure 4. Effect of predicted high-impact SNVs on receptor stability, HSP docking, and antitumor effector response. (A) Distribution of 1233 candidate 
SNVs binned into 89 exons of the CD91/LRP1 gene. Individual ligand binding domains are indicated. Interdomain regions that play no binding or membrane 
anchoring role are colored uniformly black. The inset figure shows the number of mutations per base in each domain. Vertical height of each bar indicates 
the number of SNPs falling within that exon. (B) Visualization of high-impact SNV –log(P value) score of change in stability energy between the SNV-altered 
CD91 and WT. Higher scores represent increased magnitude of change in stability energy compared with all other candidate SNVs. Red line was chosen at a Z 
score of 1.96, and points above this threshold have a P < 0.05. (C) Scatter plot of high-impact SNV effect on hsp90-CD91 binding interactions. Negative and 
positive scores represent increased binding or decreased ligand binding, respectively, in hsp90-altered CD91 receptors compared with WT reference binding 
energies. The 4 ligand binding domains of CD91 are color coded as indicated. Black arrows represent SNVs that appear in 4 individual patients with lung 
squamous cell carcinoma, and red arrows represent SNVs that appear in 4 individual patients with skin cutaneous melanoma. The position of each SNV is 
indicated by a number next to each arrow. (D and E) Stacked bar plot showing predicted high-impact SNVs in human samples of lung squamous cell carcino-
mas (D) or skin cutaneous melanoma (E) and the associated presence of CD8+ immune cells from transcriptomic data. RNA-Seq expression levels (in FPKM) 
are used as a proxy for CD8+ T cell presence. Solid bars indicate SNVs with –ΔΔG docking impact, and hatched bars indicate SNVs with +ΔΔG docking impact.
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is that T cell responses require costimulation for priming, and HSPs are capable of  providing signals for T 
cell costimulation through CD91 (16, 17). Our previous work with CD91fl/flCD11cCre mice showed the role 
of  tumor-derived HSP in priming CD8+ T cell responses to implanted tumors (18). That system allowed the 
subtle titration of  antigen dose available for cross-priming. The HSP-CD91 pathway was shown to be required 
for antitumor immunity when antigen in a few thousand tumor cells was present, which is in the range of  
the prepalpable (week 2), MCA-induced tumors developed here. Our findings of  decreased CD8+ T cells and 
NK cell infiltrates in CD91-deficient mice at early time points (Figure 2) are therefore fully consistent with the 
inability of  tumor-derived HSP to prime and activate these cells, respectively (15, 18). The third conclusion is 
that CD91 SNVs that occur within the human population have the potential to affect HSP ligand binding. By 
analyzing The Cancer Genome Atlas (TCGA) data for patients with lung squamous cell carcinomas and skin 
cutaneous melanoma, we identified several of  these SNV that are detrimental to HSP binding. These occur 
in the ligand binding domains of  CD91 and resulted in a poorer immune response as measured by fewer 
tumor infiltrating CD8+ T cells. We also found SNV with converse effects on HSP binding and patients with 
these had higher numbers of  tumor infiltrating CD8 cells. Narrowing down the cumulative effects of  all SNV 
on an individual scale is becoming important since effects on binding affinities of  each SNV within a single 
gene may cancel out or enhance another. In concert with CD91 SNVs, early observations indicate that CD91 
expression levels may likewise be important for developing antitumor immunity (25). In this regard, high 
CD91 expression in APCs confers a better prognosis in patients with advanced melanoma. The dual factors 
of  CD91 SNV and expression levels will be a critical determinant in priming immune responses that influence 
the genesis and progression of  cancer. Additional roles for CD91 beyond cross-presentation of  HSP-chaper-
oned antigens are also under consideration (20). Given the requirement of  pre-existing T cell responses for 
successful check-point blockade cancer monotherapy (32–34), deficiencies in CD91 function, either by SNV 
or insufficient expression levels will be a major determining factor for such treatments, overall prognosis for 
disease progression, and also for identifying individuals at risk for developing cancer.

Methods
Mice. Female C57BL/6, B6(Cg)-Rag2tm1.1Cgn/J (Rag2–/– C57BL/6), mice (catalog 008449) were purchased from 
The Jackson Laboratory. CD91fl/flCD11cCre and CD91fl/fl littermates have been previously described. All mice 
were housed or bred in the animal facility at the University of Pittsburgh (Pittsburgh, Pennsylvania, USA). All 
experimental mice were 6 to 8 weeks old. All experiments with mice were approved by the Institutional Animal 
Care and Use Committee at the University of Pittsburgh and performed in compliance with its guidelines.

Tumor induction and immune phenotyping. Tumors were induced in mice by intradermal injection of  
200 μg of  MCA (MilliporeSigma) dissolved in peanut oil (MilliporeSigma). The injection site (at week 2) 
and palpable tumor (at weeks 9 and 18) were harvested as indicated in figures. Tissue was immediately 
mechanically disrupted, followed by enzymatic digestion using 0.2% Collagenase D (MilliporeSigma) in 
RPMI and 2% BSA (MilliporeSigma). Cell suspensions were stained for flow cytometry in PBS with 1% 
BSA and 0.1% sodium azide using the following antibodies from BD Biosciences — α-CD45.2 (catalog 
560695), α-CD4 (catalog 550954), α-CD8α (catalog 558106), α-NK1.1 (catalog 564144), α-CD11b (catalog 
553312), α-CD11c (catalog 564986), and α-Gr1 (catalog 557979) — or eBiosciences — α-CD3e (catalog 
11-0031-85) and α-Ly6C (catalog 48-5932-80). Cells were acquired by flow cytometry on a BD LSRII and 
analyzed using FlowJo software (Tree Star Inc.). FCS data were also analyzed via unsupervised approaches 
using the MATLAB tool Cyt (35).

Exome sequencing. Genomic DNA from tumors of size 10- to 12-mm diameter was purified using the Qiagen 
Puregene Kit. The Genomic DNA was sheared with Ion Shear Plus Reagents (Ion Plus Fragment Library Kit) 
and size selected with Agencourt AMPure XP beads (Beckman Coulter). DNA fragments with a bp peak of  
100–150 bp were ligated with Ion adapters, purified with Agencourt AMPure XP beads, and PCR amplified. 
Then, 750 ng of the adapter-ligated DNA library was hybridized to SureSelect capture library (Agilent SureSelect 
XT Mouse All Exon Kit) for 20 hours at 65°C. The hybrid capture library was selected using Dynabeads MyOne 
Streptavidin T1 beads (Life Technologies). The captured library was amplified and purified with AMPureXP 
beads, and quality was assessed on the High Sensitivity DNA Kit (Life Technologies) on the Agilent Bioana-
lyzer. We selected 220-bp peak using E-Gel SizeSelect 2% agarose gel (Life Technologies). The final library was 
purified and quality assessed on High Sensitivity DNA Bioanalyzer chip (Life Technologies). Templates were 
prepared using the Ion PI Hi-Q Chef Kit (Life Technologies) on the Ion Chef platform and sequenced on an Ion 
Proton Sequencer on a PI v3 chip using Ion PI Hi-Q Sequencing 200 Kit (Life Technologies).
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Prediction of  neo-epitopes. Exome reads were mapped against mm10 reference genome using the HISAT2 
version 2.1.0 alignment program (36) with options “--sensitive --no-discordant --no-mixed --no-unal.” SNVs 
were called using the SNVQ tool included in the NGSTools package version 2.0.0 (37). SNVQ computes 
posterior probabilities for each possible genotype based on quality scores of  aligned bases and calls a variant 
if  the genotype with highest posterior probability is not a homozygous reference. High-confidence SNVs 
were selected by requiring a genotype Phred score of  50 and a minimum of  3 reads supporting the alter-
native allele, with at least 1 read mapping on each strand. Heterozygous SNVs unique to each tumor were 
classified as novel somatic mutations. Homozygous SNVs as well as heterozygous SNVs shared by more 
than 1 tumor were considered germline mutations and were not used for epitope prediction. Prediction of  
neo-epitopes was performed based on Consensus CDS annotations release 16 (38) using a custom Galaxy 
tool. For each nonsynonymous somatic mutation, we used NetMHC 4.0 (39) to compute the predicted 
binding affinity (IC50) of  each 8-, 9-, 10-, and 11-mer–mutated peptide for the H-2-Kb and H-2-Db alleles.

CD91 SNP mining. All available SNPs were mined from the NCBI’s dbSNP (https://www.ncbi.nlm.
nih.gov/snp). Filters were applied to select for significant missense SNPs. These were aligned to the human 
LRP1 FASTA mRNA nucleotide sequence (NM_002332.2) obtained from NCBI’s Nucleotide database 
(https://www.ncbi.nlm.nih.gov/nuccore). Resultant nucleotide changes were then translated to the cor-
responding LRP1 amino acid sequence obtained from the Universal Protein Resource Knowledgebase 
(http://www.uniprot.org/). The final data set was automatically organized to contain information for the 
number of  the amino acid residue changed (e.g., residue 32), the relative number of  the residue within that 
domain’s generated 3D model (e.g., residue 14 in binding domain 1), the codon allele (e.g., T or G) change, 
and the residue change (e.g., F to L). Using this data set, SNP-specific LRP1 FASTA amino acid sequences 
were created for each candidate missense SNP. FASTA amino acid sequences for binding domains 1, 2, 3, 
and 4, along with the interdomain space between binding domains 2 and 3, 3 and 4, and 4 and C-terminus 
ending. These were used as input for computational 3D modeling.

CD91 domain modeling. The LRP1 receptor is large and therefore prohibitive for traditional structure deter-
mination techniques, such as NMR or crystallography, with less than 4% of the protein structure available in 
Research Collaboratory for Structural Bioinformatics Protein Data Bank (https://www.rcsb.org/). Therefore, 
we used a divide-and-conquer strategy by generating 3D structures for WT binding domains 1, 2, 3, and 4 as well 
as interdomain spaces 2–3, 3–4, and 4 to C-terminus ending. Unique 3D models were created for all candidate 
SNPs integrated into their respective domains. We generated models using I-TASSER prediction server (40). To 
ensure an optimal final model, all generated models were refined using ModRefiner (41). Model visualization 
was performed through PyMol (The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC).

Deleterious CD91 SNV prediction. All candidate SNVs were first submitted to SIFT to predict SNV-caused 
amino acid substitutions’ effect on protein function based on amino acid conversation rate across species 
(42). All candidate SNVs were then submitted to PolyPhen2 to predict effect of  SNV-caused amino acid 
substitution on both function and structure based on sequence alignment and probabilistic machine learning 
classification (43). Both tools serve as a dual algorithmic measure of  deleterious impact of  individual SNVs.

Prediction of  SNP impact on CD91 stability. SNP-induced changes in CD91 stability were determined 
using iStable (44). This web-based tool is an integrated stability predictor that uses a combination of  protein 
sequence and structure information as input to produce a meta-result backed by a support vector machine 
trained on 6 popular prediction tools. Results from I-Mutant 2.0 were used to provide a quantitative predic-
tion of  SNP-induced stability change based on the same input used previously with iStable (45).

Prediction of  SNP impact on CD91 hsp90 docking affinity. Docking simulations were performed for all 3D 
models of  WT CD91 ligand binding domains and all SNV-specific 3D models. All receptor models were 
paired with human hsp90 serving as the docking ligand. Simulations were run using Hex Protein Docking, 
an interactive docking program that allows for efficient simulation of  multiparameter large-molecule docking 
aided by graphics processing unit acceleration (46). The calculated ΔΔG values reflect the degree of  impact 
an SNV has on the docking energy of  HSP-CD91 binding interactions compared to WT CD91, with negative 
and positive values representing increased or decreased binding affinity, respectively. All ΔΔG docking values 
were normalized to enable cross–binding domain comparison, and results were combined into a final data set 
with predicted impact, stability scores, and docking scores (Supplemental Table 2).

Data processing and figure construction. Programming languages for harvesting and filtering SNVs was done 
in Java with accessory shell scripting for task automation. Macros were constructed using Java and imple-
mented to automate docking simulations. Data analysis of candidate SNVs and visualization of results were 
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performed in R with the aid of ggplot/plotly/webshot packages for figure creation and tidyverse, dplyr, data.
tibble, reshape2, and magrittr packages for data transformations. Plots using GDC-deposited TCGA data were 
created using data harvested from the NIH National Cancer Institute Genomic Data Commons Data Portal 
(https://portal.gdc.cancer.gov/). All cancer samples containing relevant CD91 SNVs were collected manually. 
Transcriptome data in RNA-Seq FPKM format (Supplemental Table 3) were used to elucidate the relative 
presence of immune cell infiltrate in tumors via presence of immune cell–specific marker genes in a given sam-
ple. Immune cell–specific marker gene symbols were identified by keyword search with their corresponding 
Ensembl gene stable IDs, retrieved through Ensembl Biomart (http://useast.ensembl.org/index.html).

Statistics. Statistical analysis was run using GraphPad Prism software version 7. Student’s 2-tailed t test 
or area under the curve followed by 1-way ANOVA were used where indicated in the figure legends. Figure 
1B was analyzed by Gehan-Breslow-Wilcoxon test. P less than 0.05 was considered significant.

Study approval. All experiments with mice were approved by the Institutional Animal Care and Use 
Committee at the University of  Pittsburgh and performed in compliance with its guidelines.
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