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Introduction
Type 1 diabetes (T1D) is caused by immune destruction of  pancreatic β cells, leading to an inability to 
produce sufficient insulin. At diagnosis, most people with T1D still produce some endogenous insulin, but 
both the level and rate of  continued decline vary markedly among individuals. Age represents 1 component 
of  this heterogeneity because subjects diagnosed at a younger age tend to have lower levels of  insulin secre-
tion at diagnosis and to lose insulin secretion more rapidly after onset (1–3). The other sources of  hetero-
geneity in insulin secretion after diagnosis are not well understood. Addressing this gap could help enable 
patient selection for clinical trial enrollment, where enriching for subjects with a faster rate of  decline 
could reduce the size or duration of  efficacy trials (4, 5). Clinically, maintenance of  insulin secretion after 
diagnosis can contribute to a reduction in the rate of  disease complications (6). The rate of  loss of  insulin 
secretion is therefore considered a metric of  postdiagnosis disease progression.

Immune system parameters are also hypothesized to contribute to varied rates of  disease progression. 
Individuals with T1D are heterogeneous in regard to their immunobiology at and after diagnosis, as support-
ed by the breadth and intersubject range of  individual immunological features within this population (7–11). 

At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous 
insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this 
heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a 
collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum 
measures reflecting β cell health and immune system activity. The ability to predict decline in 
insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic 
selection. Analytes from 12 qualified assays were measured in shared samples from subjects newly 
diagnosed with T1D. We developed a computational tool (DIFAcTO, Data Integration Flexible to 
Account for different Types of data and Outcomes) to identify a composite panel associated with 
decline in insulin secretion over 2 years following diagnosis. DIFAcTO uses multiple filtering steps 
to reduce data dimensionality, incorporates error estimation techniques including cross-validation 
and sensitivity analysis, and is flexible to assay type, clinical outcome, and disease setting. Using 
this novel analytical tool, we identified a panel of immune markers that, in combination, are highly 
associated with loss of insulin secretion. The methods used here represent a potentially novel 
process for identifying combined immune signatures that predict outcomes relevant for complex 
and heterogeneous diseases like T1D.
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In recent studies of  individual assays, this heterogeneity has been suggested to predict the rate of  progression 
after diagnosis for some subjects (12–15). Better fundamental knowledge of  the array of  immune drivers of  
disease could help explain the differing rates of  loss of  β cells observed across subjects and potentially indi-
cate immunotherapeutic targets.

Determining whether a combination of  immune and β cell features can together define rate of  disease 
progression across a range of  subjects requires (a) sufficient samples from shared, well-annotated subjects 
and (b) appropriately qualified assays that broadly describe response in a given subject. Sample availability 
can be overcome by working collaboratively to obtain retrospective samples from clinical trials or similarly 
annotated longitudinal collections. Because samples from such collections are necessarily limited, ensuring 
their best use requires fit-for-purpose qualification of  any biomarker assays used. Here, we planned to run 
each assay in a single batch. Thus, the key performance parameters for assay qualification were detectability 
(frequency present) and intra-assay precision of  each analyte, when tested in the target patient population, 
with the sample type, and with available sample volume. Notably, sample volumes may disproportionately 
affect low-frequency analytes, such as low-abundance cell populations, because stochastic sampling error 
can result in false positive associations, especially when many measurements are made.

In this study, we aimed to determine whether multiple unique measures in aggregate correlate with rate of  
loss of insulin secretion. To this end, we established a stringent, well-defined, and collaborative assay evaluation 
and data analysis method. The assays selected for study included measures that were hypothesized to directly 
relate to T1D pathogenesis; these included antigen-specific CD8+ T cell frequencies (16), a Treg transcription-
al signature previously associated with T1D (17), the ratio of proinsulin to C-peptide (18), and a measure of  
demethylated insulin DNA in serum (19). Other selected assays showed prior utility in understanding T1D 
pathogenesis. These included genome-scale technologies, included here for broad screening and hypothesis gen-
eration: whole-blood and cell subset RNA-Seq (15, 20) and an assay measuring the transcriptional response to 
T1D serum (13, 21, 22) were used. Assays also included screening assessments that were smaller scale, including 
immunophenotyping by flow cytometry (23) and measurements of serum miRNA (24). Using these assays, we 
conducted a proof-of-concept study in a cohort of recent-onset T1D subjects with variable rates of C-peptide 
decline, who were followed meticulously for both metabolic outcomes and ancillary sample collection over a 
2-year period within the context of clinical trial monitoring. After filtering based on individual assay validity 
and consistency, data from all assays were integrated, their dimensionality was reduced to facilitate combined 
modeling, and features associated with C-peptide decline were identified. Model estimation error was assessed 
by cross-validation. Selected analytes were then subjected to sensitivity analysis. We found 12 analytes that, in 
combination, were prognostic for decline in C-peptide; these originated from 3 immune assays (signature of  
serum exposure, cell type–specific RNA-Seq, and flow cytometry) implicating at least 3 immune cell types. Attri-
butes of immune activation, suggestive of an attempt to control the immune response, were positively associated 
with maintenance of insulin secretion. Immune trafficking and B cell activation, the latter of which was recently 
associated with poor response to therapy (20), were both associated with increased rate of disease progression.

Table 1. Blinded replicate testing identified precisely measurable analytes from each assay

Assay Total analytes in assay (n) Passed QC (n, %) CV < 30% (n, %)
FACS 77 77 (100%) 70 (91%)
Transcriptional response to T1D serum 54675 20,962 (38%) 20,962 (100%)
PI/C 2 2 (100%) 2 (100%)
Treg signature 31 31 (100%) 22 (71%)
RNA-Seq B cells 21,737 11,539 (53%) 10,767 (93%)
RNA-Seq CD4 21,737 11,984 (55%) 11,338 (95%)
RNA-Seq CD8 21,737 11,860 (55%) 11,120 (94%)
RNA-Seq monocytes 21,737 11,254 (52%) 10,548 (94%)
RNA-Seq whole blood 21,737 12,672 (58%) 11,631 (92%)
Serum miRNA 752 241 (32%) 241 (100%)
Demethylated insulin DNA 3 3 (100%) 0 (0%)
Antigen-specific CD8 6 6 (100%) 5 (83%)

QC, quality control; CV, coefficient of variation; PI/C, proinsulin/C-peptide ratio.
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Results
Study approach and heterogeneity in C-peptide decline. We collaboratively defined an approach to identify a 
robust composite signature of  decline in insulin secretion. This method involved 2 key steps. First, we 
conducted blinded replicate testing to measure the detectability and intra-assay precision of  a panel of  
selected assays, as listed in Table 1. Next, we deployed each qualified assay on samples collected at T1D 
diagnosis to identify analytes that were prognostic for decline in insulin secretion over the following 2 years. 
PBMC, serum, and whole-blood RNA samples for this step were collected from control-arm subjects (n = 
50) enrolled in 1 of  3 new-onset T1D trials conducted by the Immune Tolerance Network (25–27). Subjects 
were meticulously followed after diagnosis, with insulin secretion assessed by mixed-meal tolerance testing 
at least 5 times between diagnosis and 2 years after diagnosis. Clinical and demographic data for included 
subjects are listed in Table 2.

As previously described (28, 29), decline in insulin secretion (as measured by circulating C-peptide) 
in the years after diagnosis was highly heterogeneous. Figure 1 shows these data for all subjects whose 
samples were used in this study. Here, we used a log rate of  decline calculated using a mixed model approx-
imating all time points available for each subject (15, 30). Change in insulin secretion in this cohort most 
strongly approximated exponential decay (15, 30). In our data set, as in previous work (1–3), age is partially 
predictive of  rate of  decline. However, it is an imperfect predictor, particularly in subjects of  younger ages, 
where variability in decline rates is highest (15). This variation is also present in subjects diagnosed at older 
ages. For example, the subjects highlighted in magenta and green (Figure 1) are aged 19 and 17, respective-
ly, and show substantively different rates of  decline.

Replicate testing identifies sufficiently precise arrays. We selected a broad range of  assays to test (Table 1). 
This included low-dimension assays selected to assess expected features of  disease progression, including 
proinsulin/C-peptide ratio (18, 31), a marker of  pancreatic islet β cell dysfunction; a demethylated insulin 
DNA assay measuring β cell death (19); antigen-specific CD8+ T cell frequency and phenotype as measured 
by qDot multimer assay (16); and a transcriptional signature of  regulatory T cells that had previously been 
identified to discriminate between subjects with and without T1D (17). Higher-dimension (genome-scale) 
assays were also included to identify data-driven features of  disease progression. These included RNA-Seq 
of  whole blood (30) and sorted B cell, CD4+ and CD8+ T cell, and monocyte subsets (32); immunophe-
notyping by flow cytometry (33); transcriptional response to T1D serum (22) assessed using Affymetrix 
microarrays; and serum miRNAs measured by quantitative PCR (qPCR) (24).

Assays with poor precision were excluded to limit the effect of  technical variation on eroding statistical 
power in the planned composite model. To assess assay precision in a blinded fashion, triplicate aliquot 
samples from 3–5 subjects with T1D were tested by each assay (per design in Supplemental Figure 1; 
supplemental material available online with this article; https://doi.org/10.1172/jci.insight.126917DS1.) 

Table 2. Clinical and demographic data for recent-onset cohort

AbATE (n = 22) START (n = 18) T1DAL (n = 10) Total (n = 50)
Age (years)A 12.0 (8.5–25.9) 17.5 (12–34) 21 (13–32) 15.8 (8.5–34)
HbA1c (%)A 7.7 (6.1–11.1) 6.6 (4.9–10.2) 9.5 (5.5–15.2) 7.35 (4.9–15.2)
C-peptide AUC (pmol/mL/120 min)A 0.60 (0.27–1.52) 0.84 (0.39–2.58) 0.59 (0.19–0.9) 0.67 (0.19–2.58)
Sex (Female)B 7 (32%) 7 (39%) 3 (30%) 17 (34%)
Race/Ethnicity (non-Hispanic white)B 18 (82%) 11 (61%) 9 (90%) 38 (76%)
HLA-A*02 (positive)B 10 (45%) 8 (44%) 7 (70%) 25 (50%)
HLA-DR*0401 (positive)B 9 (41%) 2 (11%) 8 (80%) 19 (38%)
HLA-DR*03 (positive)B 9 (41%) 9 (50%) 3 (30%) 21 (42%)
HLA-DR*03 and *0401 (positive)B 2 (9%) 1 (6%) 1 (10%) 4 (8%)
Insulin autoantibody (positive)B 13 (59%) 9 (50%) 7 (70%) 29 (58%)
GAD autoantibody (positive)B 21 (95%) 14 (78%) 10 (100%) 45 (90%)
IA-2 autoantibody (positive)B 20 (91%) 6 (33%) 7 (70%) 33 (66%)
ZnT8 autoantibody (positive)B 14 (64%) 7 (39%) 9 (90%) 30 (64%)
AMedian (range). Bn (%). AbATE, Autoimmunity-Blocking Antibody for Tolerance in Recently Diagnosed Type 1 Diabetes; START, Study of Thymoglobulin to 
Arrest Type 1 Diabetes; T1DAL, Inducing Remission in New-onset Type 1 Diabetes with Alefacept.
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Over 160,000 individual analytes were measured across all assays (Table 1). Of  these, 49% (80,852 ana-
lytes) met initial quality control or detection limits specific to each assay. Down-selection at this step was 
driven primarily by the higher dimension assays; for example, much of  the genome is not expected to be 
transcribed in CD4+ T cells, and thus these unexpressed genes are filtered out from the RNA-Seq assays. 
Next, the CV (here expressed as a percentage) for each analyte was calculated per subject; any analyte with 
a mean CV less than 30% was eligible to be included in downstream analyses. The majority of  analytes that 
met detection limits (91%) met the CV cutoff. Replicate testing data are available in Supplemental Figures 
2–7. All analytes that did not meet this CV threshold were removed from further analysis.

The demethylated insulin assay was removed entirely from our pipeline at this phase because the CV 
in samples from subjects with T1D (regardless of  duration) was consistently above our cutoff  (Supplemen-
tal Figure 4). This may have been driven by sample quality because the serum samples for both replicate 
testing and the recent-onset cohort had been stored for many years and were not collected according to 
protocols optimized for this assay. The antigen-specific CD8+ T cell assay (qDot multimer, Supplemental 
Figure 5) was also removed at this phase. This assay had an acceptable CV but could be applied only to 
assay HLA-A2+ subjects, and the number of  subjects in the recent-onset cohort bearing the HLA of  interest 
was too low for the assay to have utility. The miRNA assay (Supplemental Figure 6) was attempted in the 
recent-onset cohort samples; however, it was removed before data analysis. Laboratory processing failures 
that occurred during miRNA extraction resulted in too few samples with sufficient available data for analy-
sis. This stringent culling of  assays and analytes reduced our total analyte count substantially, likely improv-
ing our statistical power based on reduced measurement error in the retained analytes. The process result-
ed in the removal of  3 assays (demethylated insulin, CD8 antigen–specific T cells, and serum miRNA). 
Although a considerable number of  analytes were removed, we found that the vast majority of  analytes 
tested in the 9 assays that were included in the rest of  the study (95%) met our predefined precision cutoffs.

Development and tuning of  an analysis pipeline incorporating multiple data types. There are many tools opti-
mized for single types of  assay data but few that integrate multiple data types. Thus, we developed an 
analytical tool that was capable of  incorporating the multiple data types tested here (Figure 2). The tool 
brings together established analytical methods (such as LASSO; ref. 34) with newly developed code to 
integrate varied data types. It was developed in the R programming language and is freely available. The 
tool is flexible to data types and to outcomes and thus is named DIFAcTO: Data Integration Flexible to 
Account for different Types of  data and Outcomes; here, DIFAcTO was tested with 5 data types and a con-
tinuous clinical outcome. An optional dimension reduction step can be applied to whole-genome assays. 

Figure 1. C-peptide decay rate for each subject included in the recent-onset cohort. C-peptide decay rate for each 
subject included in the recent-onset cohort (n = 50). Each line is 1 subject. Subjects highlighted in blue and green 
demonstrate slow and rapid decline, respectively. The subject highlighted in olive showed no detectable insulin 
secretion at a time point before the end of the study; decay rate calculations used throughout exclude the second 
time point at the limit of C-peptide detection. Some subjects (example in green/magenta) are similar in age but have 
disparate C-peptide decay rates.
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In our study, each whole-genome assay was subjected to modular analysis by weighted gene co-expression 
network analysis (WGCNA) (35), and modules identified were treated as independent analytes, which were 
scaled and clustered as described below.

We used a machine learning approach that combines the following multistep analyte filtering. Step 1 
is preprocessing by scaling and preliminary feature selection. Step 2 then identifies a multivariate model 
(using LASSO), which also implements internal feature selection. The goal of  the first preprocessing step is 
to remove analytes (features) that are poorly associated with the dependent variable (rate of  C-peptide loss) 
so that an acceptable number of  features are included in the later LASSO step. The first step of  preprocessing 
is itself  done in 2 parts. The first is univariate filtering: within each assay, all individual associations between 
each analyte and the dependent variable are estimated. Only the top analytes are kept for further analysis, 
based on rank or significance thresholds (with correction for multiple comparisons). The second is clustering 

Figure 2. Schematic of analysis pipeline developed to integrate multiple data types. Analytes are merged and scaled. Initial univariate filtering leaves 
only those analytes with at least modest correlations to the outcome for each assay. Subsequent filtering (clustering) identifies best correlated analyte in 
a given cluster (regardless of assay). From these, a composite model is generated using LASSO with cross-validation. The box plots depict the minimum 
and maximum values (whiskers), the upper and lower quartiles, and the median. The length of the box represents the interquartile range.
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of associated analytes across multiple assays. Many of  the selected analytes may strongly correlate with each 
other, even across different assays. For the final multivariate model, this may cause multicollinearity, which 
would complicate interpretation of  associations. To avoid this, analytes are clustered by Pearson’s correlation 
using hierarchical clustering. The number of  clusters is determined by a tuning parameter (described in detail 
below). A single representative analyte is then selected to represent the cluster; this analyte is most strongly 
associated with the dependent variable in each cluster. Lastly, a multivariate model (LASSO; refs. 34, 36) 
with predefined covariates (clinical, demographic) and the remaining analytes is performed. The LASSO 
also implements a regularized step that removes additional nonsignificant analytes. For this study, we incor-
porated baseline C-peptide, age, HLA, and BMI as known potential predictive covariates; these analytes were 
included in the LASSO analysis to ensure they were considered as potential components of  the model.

To allow a wide range of  analytes and outcomes, DIFAcTO includes multiple user-adaptable parame-
ters. The user can specify the number of  analytes from each assay that enter the clustering step. The min-
imum within-cluster correlation used at the clustering step can also be tuned. Increasing this value results 
in a larger number of  highly correlated clusters and thus a larger number of  analytes entering the feature 
selection step; decreasing this value results in poorly correlated analytes within a cluster but fewer analytes 
entering the feature selection step. Both of  these parameters (number of  analytes per assay and minimum 
correlation per cluster) should be tested with each data set to identify optimal parameter settings. For this 
study, we evaluated a range of  minimum correlation values and analyte counts per assay and assessed the 
cross-validation error rates after feature selection (Figure 3). Error rates reached a near minimum for this 
data set, with 30 analytes per assay included in the feature selection and within-cluster correlation of  r = 0.7. 
In total, 201 clusters were identified, and a single analyte from each was used for LASSO feature selection.

Identification and sensitivity analysis of  a composite analyte panel associated with insulin secretion. We next applied 
DIFAcTO to our primary question: which immune markers measured at baseline (diagnosis) would, in a mul-
tivariate model, be prognostic for rate of C-peptide decline over the ensuing 2 years of disease? Using these 
optimized parameter settings, we identified a model composed of 17 immune analytes that, measured at diag-
nosis, were prognostic for rate of decline in insulin secretion. This rate was determined by using a standard 
clinical measure of C-peptide during mixed-meal tolerance testing (AUC C-peptide) at 5 time points over 2 
years, as described previously (15, 30). Table 1 lists each individual analyte and the assay from which it was 
measured. C-peptide level at diagnosis is a known correlate of future C-peptide decline and was selected by the 
tool. We noted that age, HLA, and BMI were not selected as independent predictors in analysis of this cohort.

Although we did considerable filtering of this data set and performed cross-validation in feature selec-
tion, we recognized the continuing risk of identifying false positive associations given the number of analytes 
assessed. We therefore performed a preliminary sensitivity analysis on the remaining 17 analytes. We reasoned 
that an analyte should, at minimum, be robust to minor changes in settings of our own analytical tool; slight 
modifications to numbers of analytes per cluster or to clustering correlations should still result in a similar set 
of analytes. As expected, C-peptide at diagnosis (baseline) was consistently selected by DIFAcTO using all 
parameters tested (Figure 4). We identified 12 analytes that were robust to analytical tool settings (Table 3). 
Five analytes, however, were specific to only a few settings in DIFAcTO (annotated as “dropped” in Table 3); 
we predict that these analytes would likely not be associated with C-peptide decline in a separate validation 

Figure 3. Establishment of optimal parameter set-
tings. Changing settings within the analytical tool 
(DIFAcTO) identifies point of lowest cross-validation 
error associated with higher within-cluster correla-
tion (r = 0.7) and a moderate number of analytes per 
assay (n = 30). Each line shows the cross-validation 
error (root mean squared error, RMSE) for a given 
analyte per assay setting (x axis) at a given mini-
mum correlation within cluster (indicated by color).
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data set because they were not robustly selected in this one. Individual correlations between C-peptide decline 
rate and each remaining analyte, as well as baseline C-peptide, are shown in Figure 5, ranked by correlation 
to C-peptide decline. Of the 12 analytes selected by the tool, 11 were more highly correlated with C-peptide 
decline than was baseline C-peptide. Because age was not selected by the tool, we also inspected the relation-
ship between age and each individual analyte (Supplemental Figure 8). The analyte most highly correlated with 
age was the MFI of T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif  domains 
(TIGIT) on naive CD8+ T cells; this was also the analyte with the lowest individual correlation with C-peptide 
decline. The remaining analytes and baseline C-peptide had limited correlations with age in this data set.

Finally, we assessed the performance of our tool in predicting C-peptide decline in this data set and tested 
its ability to identify previously published analytes from an independent data set in a different disease context. 
C-peptide decline prediction was tested by fitting a linear model to the data using 3 sets of predictors: a baseline 

Figure 4. Characteristics of analytes selected by tool. Sensitivity analysis shows that, even with cross-validation implemented in LASSO, 5/17 
analytes are not robust to different parameter settings within the tool. These 5, indicated in grayscale, are unlikely to be validated in an independent 
cohort. Each individual plot’s x and y axes represent settings used to run the analytical tool; the number of analytes per assay setting is on the x axis, 
and minimum correlation per cluster is on the y axis of each miniplot. Darkest coloring indicates that the analyte was selected by the tool using that 
combination of x and y settings. Lighter coloring indicates that another analyte in that same cluster was selected by the tool. Light gray indicates that 
this analyte was not selected using that combination of x and y settings. Each miniplot is labeled by analyte and the assay from which it was originally 
measured. “Affy” indicates the transcriptional response to T1D serum assay as this is conducted on the Affymetrix platform.
 

https://doi.org/10.1172/jci.insight.126917
https://insight.jci.org/articles/view/126917#sd


8insight.jci.org      https://doi.org/10.1172/jci.insight.126917

R E S E A R C H  A R T I C L E

model using C-peptide at diagnosis as a known predictor, a “full” model using all 17 identified analytes, and 
a “maintained” model using only the 12 analytes that were found to be robust to tool settings. From these fits 
we calculated an adjusted R2 value that reflects how well the model fits the data. Additionally, we calculated 
a robust, cross-validated RMSE by separating the data into 5 folds and, for each fold, training on the other 
four-fifths of the data and predicting the held-out fold. We did this 1000 times to get a robust estimate of the 
RMSE along with a 90% confidence interval. The results are shown in Supplemental Table 1. Using our select-
ed analytes improved prediction over baseline C-peptide in this data set, as reflected both in adjusted R2 and 
RMSE. Additionally, the improvement in performance of the maintained model over the full model supports 
our decision to remove those analytes that were not found to be robust to initial parameter settings. In an initial 
step toward comparison of this tool to elastic net, we tested an independent data set from a clinical trial of an 
HIV vaccine, RV144 (37). DIFAcTO successfully identified previously known immunological predictors in this 
high-dimensional data set (Supplemental Methods).

Discussion
Here, we describe a collaborative, generalizable method to identify robust, inclusive correlates of  clin-
ical outcomes and a proof-of-concept usage of  that method to identify a panel of  markers associated 
with decline in insulin secretion after diagnosis. In developing this method, we had 3 key goals: first, 
including data from as many assay types as possible and incorporating the expertise and perspective 
of  as many investigators as was feasible; second, blind assessment of  reproducibility for all analytes 
included in any analyses to increase likelihood of  future success; and third, transferability to other 
studies and data sets.

One important component of  our method was the collaborative identification of  assays that might yield 
results of  interest (38). We focused on choosing assays that were thought to be independent and mechanisti-
cally related to T1D pathogenesis, such as the proinsulin/C-peptide ratio, as well as assays that could gen-
erate more broad-based, hypothesis-generating results, such as RNA-Seq of  multiple immune cell subsets. 
Nine investigators chose to participate in, and provide data for, this collaborative project; this resulted in a 
rich data set, generated from the same sets of  subjects that are now being mined for other clinical outcomes 
and associations between immune markers. We partnered in this effort with a major autoimmunity clinical 

Table 3. Analytes selected by the tool, assay from which they were derived, and status after sensitivity 
analysis

Analyte Assay Sensitivity analysis resultA

MFI of TIGIT on KLRG1+TIGIT+CCR7–  

Naive CD8
FACS Maintained

EIF4G2 Signature of serum exposure Maintained
GPR75 Signature of serum exposure Maintained
SVEP1 Signature of serum exposure Maintained
SORBS2 Signature of serum exposure Maintained
JAGN1 RNA-Seq B cell Maintained
KIAA0319L RNA-Seq CD4 Maintained
TOP3B RNA-Seq CD4 Maintained
LRTOMT RNA-Seq CD8 Maintained
PLA2G4B RNA-Seq CD8 Maintained
ZNF596 RNA-Seq CD8 Maintained
MLXIP RNA-Seq whole blood Maintained
CCDC144A RNA-Seq B cell Dropped
SRRT RNA-Seq B cell Dropped
CCDC38 RNA-Seq CD4 Dropped
Affy WGCNA Gene ModuleB Signature of serum exposure Dropped
RNA-Seq Whole Blood Gene Module RNA-Seq whole blood Dropped
ASensitivity analysis result derives from Figure 3A, where analytes were tested against multiple tool settings as a 
preliminary assessment of robustness. B“Affy” indicates the transcriptional response to T1D serum assay as this is 
conducted on the Affymetrix platform.
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trial network (the Immune Tolerance Network; ITN), which furthered the visibility of  this work in the T1D 
research community and may improve the possibilities for future clinical translation of  our findings.

Our second focus was on assay quality. The technical precision of  each individual analyte is essential 
to the reproducibility of  the composite panel and thus to our ability to identify meaningful correlates of  
clinical outcomes. An early step in our process, therefore, was a preliminary assessment of  immune marker 
reproducibility. Should these markers be of  interest for future translation, many other assessments, includ-
ing broader reproducibility measurements and multicenter validation, as recently described (39), would 
clearly be needed. Here, we applied a moderate level of  rigor — requiring a mean CV less than 30% across 
a limited number of  subjects with T1D for each assay. Still, this was sufficient to remove over 4000 analytes 
even after initial QC was applied. For the genome-scale assays, CV cutoffs were applied after detection 

Figure 5. Individual correlations between each selected analyte and insulin secretion. Immune markers were measured at trial enrollment (within 90 days 
of diagnosis, n = 30 subjects), and y axis indicates C-peptide decay rate per day over the 2 years after diagnosis. Each miniplot uses the scaled value for the 
analyte on the x axis. Pearson’s correlation values are listed at the top of each miniplot; miniplots are ordered by absolute correlation value. Regression lines in 
blue. Note that in this data set, several immune parameters have higher correlation values with rate of C-peptide decay than does C-peptide level at diagnosis 
(Pearson’s r = 0.39). Assays and analyte names are truncated; full names can be found in Table 3. “Affy” indicates the transcriptional response to T1D serum 
assay as this is conducted on the Affymetrix platform.
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thresholding processes; although a much larger number of  analytes were removed because of  lack of  detec-
tion, technical imprecision resulted in the removal of  hundreds to thousands of  additional analytes for 
each RNA-Seq assay. This method of  dimension reduction could be applied with relative ease and should 
reduce type 1 error resulting from detection of  random associations between variables that can occur with 
imprecise measurements. One caveat to this substantial data reduction is that analytes associated with 
C-peptide decay may have been excluded because they did not fit our criteria; for example, there may be 
measurements that are more highly expressed and thus more reproducible in specific subjects or at specific 
disease stages. Future studies may reassess reproducibility in larger populations of  T1D and other subjects. 
However, we accepted the trade-off  between known reproducibility characteristics and the theoretical loss 
of  important analytes. Separately, gene expression data tend to cluster into strongly correlated groups of  
genes (35), and groups of  immune cell populations also show strongly correlated clusters (40). In some 
cases, the relationship to C-peptide that may be present for an analyte with low reproducibility will be rep-
resented by a more reproducible analyte in that or another assay.

Our third focus was on building a broadly useful analytical process. This method, from reproducibility 
testing through the use of  our new analytical tool, is generalizable. DIFAcTO has been used to find analytes 
associated with both categorical and continuous outcomes. It has user-modifiable parameters that allow it 
to accommodate data sets of  different sizes and data with different variability profiles. Indeed, in this study 
we used parameters that enabled us to prioritize selection of  variables from multiple assays that may help 
understand T1D biology, rather than focusing solely on predictive performance. The tool can incorporate 
multiple data types, including genome-scale data sets. It has been developed in R/MLR (41), which is an 
advanced, generic, robust analytical framework for multivariate analysis modeling and feature selection 
methods. As mentioned, we are now mining this data set to identify robust predictors of  other clinical out-
comes in these subjects. However, DIFAcTO could easily be applied by those investigators and consortia 
with very large clinical and mechanistic data sets.

We have used this method to identify a diverse multivariate model that predicts C-peptide decline. Of  
course, to move toward clinical utility, this panel would need to be confirmed in an independent replication 
cohort. In addition, the panel would likely need to be transitioned to more focused assays, as opposed to the 
genome-scale data analyzed here, and therefore would need full, independent qualification using the focused 
assay methods, as has been considered in other studies (reviewed in refs. 5, 42). One might speculate that 
this panel could be informative at earlier stages of  T1D, including the antibody-positive at-risk setting, or that 
it may be predictive of  future disease-associated complications. This remains to be tested in other data sets.

Interestingly, this composite panel incorporates markers of  multiple cell types and pathways. The 
expression level of  each component immune feature in our signature differs across subjects. However, 
we can see common immunological themes. We found that markers associated with immune activation 
(TOP3B, LRTOMT), ER processing (ZNF596, EIF4G2), and regulation of  activation (SORBS2, TIGIT 
on naive CD8+ T cells) were positively correlated with slower loss of  insulin secretion. Additional markers 
were associated with viral or interferon responses (PLA2G4B, KIAA0319L). These positive correlations 
may initially be counterintuitive because islet β cell destruction is thought to be immune mediated. How-
ever, a similar association of  immune activation and increased regulation has been observed in regula-
tory T cell studies in autoimmunity, where there is an ultimately failed attempt to control the immune 
response (43). Thus, in part, our data suggest that immune activation positively associated with slower 
disease progression, representing immune processes directed toward controlling autoimmunity. In contrast, 
in the same T1D population, we also found negative correlations with maintenance of  cell trafficking and 
insulin secretion, respectively (SVEP1, GRP75), as well as functional markers of  B cells (JAGN1). This is 
consistent with 2 previous findings: increased B cells in pancreatic sections (7) and a B cell transcriptional 
signature found to correlate with poor response to therapy and more rapid C-peptide decline (15, 20). 
Together, these data suggest that there may be common immune processes that associate with slower dis-
ease progression, but they likely differ in composition and predominance across subjects, highlighting the 
universal value of  a composite signature.

Immune, β cell, and demographic data were all included as potential predictors in the LASSO analysis; 
we note that 12 immune features and baseline C-peptide were selected. Importantly, nearly all the selected 
markers (11 of  12) when analyzed independently were more highly associated with decline in insulin secre-
tion than was baseline C-peptide, highlighting the possible relevance of  these potentially novel immune 
markers. As would be expected from previous studies (1, 44, 45), the tool identified baseline C-peptide as 
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an important predictor of  insulin secretion. HLA, BMI, and age, however, were not selected to contribute 
to the composite model. Age and HLA have each been established to play a role in predicting risk of  T1D 
development (46–48); a role for BMI has been investigated, but the relationship with disease risk varies 
by study (49–53). In agreement with our findings, HLA and BMI have not been consistently identified as 
predictors of  insulin secretion after diagnosis (15, 44, 54). Our expectation was that age, however, would 
be selected by the analytical tool. One immune marker showed a moderate correlation with age (MFI of  
TIGIT on naive CD8+ T cells); we speculate that some of  the role age plays in disease progression may be 
reflected in part by this marker. Intriguingly, baseline C-peptide was itself  not strongly correlated with age 
at onset in this data set. Another potential reason that age was not selected is an enrichment in this data 
set of  relatively older-onset T1D subjects (median age 19.25 years for subjects included in LASSO analy-
sis), which is not unexpected based on the demographics of  T1D development in many nations (55–57). 
Although this cohort may underrepresent early-onset cases, it is representative of  subjects who qualify for 
immune intervention at disease onset.

In summary, we have developed a method to generate high-quality data across multiple assays and an 
analytical pipeline to combine and analyze disparate data types. This method identified a composite model 
associated with decline in insulin secretion that includes both expected and novel biological insights that 
could move toward replication in other cohorts and potentially assessment in other stages of  T1D.

Methods
Subjects and clinical outcome data. All recent-onset samples (serum, PBMC, purified RNA, and Tempus tubes) 
were provided by the ITN and were obtained from subjects with T1D randomized to the control arms of  3 
new-onset T1D trials (25–27). PBMC and serum samples were processed at a central location as described 
in the original trials; RNA samples were processed as described previously (15). Clinical and demographic 
data were obtained from ITN TrialShare (58), a freely available source of  results from ITN trials. Samples 
from the AbATE study were not received for the cell subset RNA-Seq assays and thus could not be included 
in the LASSO selection, leaving n = 30 subjects.

Rate of  C-peptide decline was calculated as previously described (15, 30). In brief, C-peptide 2-hour 
AUC measurements from the baseline and 6-, 12-, 18-, and 24-month visits were log-transformed and fit to 
a linear model with participant as a random effect. Repeated C-peptide measurements at the lower limits of  
detection were removed from fitting. The C-peptide decay rate was extracted from the fit as the slope of  the 
linear model. The fits were performed using the lme4 package.

Assay methods. Each of  these assays has been previously published individually. Whole-blood RNA-
Seq data were generated from Tempus tubes (Applied Biosystems) using the process described previously 
(20, 30). Cell subsets were sorted and RNA-Seq data generated using the process described previously (59). 
All RNA-Seq data were prefiltered to remove all non–protein-coding genes. RNA-Seq sample identity was 
verified using kinship comparisons based on genomic variants called from the RNA-Seq reads (20) and clus-
tering of  sample data by source cell type; all samples matched their annotated subject and cell type. Flow 
immunophenotyping panels were those routinely implemented for ITN clinical trials, as described previous-
ly (26, 33). The transcriptional response to T1D serum assay was conducted as described previously (13). 
The miRNA assay was conducted using the Exiqon qPCR platform as described previously (24). The Treg 
transcript assay was performed using the NanoString platform as described previously (14, 17), with samples 
for the Treg assay sorted concomitantly with the cell subset RNA-Seq sample set. The proinsulin/C-peptide 
assay was conducted using a trefoil time-resolved fluorescence immunoassay (31), adapted to an AutoDelfia 
automatic system (PerkinElmer) (18). The demethylated insulin assay was conducted using the RainDance 
droplet digital PCR platform (RainDance Technologies). The antigen-specific CD8+ T cell assay was con-
ducted using a multicolor quantum dot multimer assay described previously (16). For additional information 
on data processing for each genome-scale assay, please see the supplemental materials.

Replicate testing data. The replicate testing cohort was used to determine the technical precision of  each 
analyte by calculating the intrasubject CV for 3 biological replicate aliquots from the same blood draw from 
5 subjects. Briefly, after data processing, the intrasubject CV was calculated from the 3 replicates. For each 
analyte, the mean CV across subjects was calculated. Analytes were retained for the analyte selection pipe-
line if  the mean CV was below 30%. Replicate testing data for all RNA-Seq assays and the transcriptional 
response to serum assay are available at the National Center for Biotechnology Information (NCBI) Gene 
Expression Omnibus (GEO) database at GSE131528.
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Analyte selection tool. All analyses were conducted using the R programming language and software 
environment (60). Analytes were sequentially processed in the following steps: analyte scaling, univari-
ate filtering, assay merging, hierarchical clustering, and multivariate modeling. Analyte scaling was per-
formed for each assay separately by subtracting the mean and dividing by the standard deviation, such 
that the mean of  all analyte values was equal to 0 and the standard deviation of  all analyte values was 
equal to 1. Univariate filtering was performed by first applying a linear model to each analyte using the 
analytes as the predictor, C-peptide decay rate as the outcome, and sex, study, BMI, age, and baseline 
C-peptide as covariates. The P value of  the analyte term was extracted from each generalized model and 
adjusted for multiple testing using the Benjamini-Hochberg algorithm. A number of  the most significant 
analytes from each assay were retained for the subsequent steps. The number of  analytes selected per 
assay is an adjustable parameter and is used for error estimation and sensitivity analysis. Next, the top 
significant analytes from each assay were merged into a single array by subject. After merging, all missing 
values were imputed with the k-nearest neighbors method (k = 20). The array containing analytes from all 
assays was then hierarchically clustered on analytes, with distance metric = 1 – cor, where cor is Pearson’s 
correlation. The distance metric value that defines which analytes are clustered together is 1 – cor*, where 
cor* is analogous to the minimum correlation within cluster. The minimum correlation within cluster is 
an adjustable parameter and is used for error estimation and sensitivity analysis. After clustering, the ana-
lytes with the lowest adjusted P value from each cluster were selected as the representative analytes and 
retained for the subsequent steps. The remaining analytes were included as covariates in a linear regres-
sion model with C-peptide decay rate as the outcome. Sex, study, age, BMI, and baseline C-peptide were 
included as additional covariates. The analytes and covariates were additionally included in a LASSO 
regression model for an optional last feature selection method. Linear models were run with the glmnet 
package. The value of  the regularization parameter used in the LASSO models was calculated by glmnet.
cv as lambda.min. The optimal values for the 2 adjustable pipeline parameters were selected as the param-
eter set that minimizes the resulting cross-validation RMSE, while maintaining a conservative number of  
analytes that are input into the linear model.

Cross-validation was performed by randomly subsetting the data set into a training set (75% of  sub-
jects) and a test set (25% of  subjects), using the training set as input into the feature selection pipeline, 
and calculating the prediction error (RMSE) on the test set. This process was performed 1000 times for 
these sets of  parameters: number of  analytes per assay and minimum correlation within cluster. The mean 
RMSE of  the 1000 iterations was calculated for each parameter set.

Sensitivity analysis. Analytes that were selected when using the optimal pipeline parameters were then 
analyzed for parameter sensitivity. Results of  the pipeline from all parameter sets were inspected for pres-
ence of  the analytes of  the optimal parameter set, either selected explicitly or clustered (i.e., highly correlat-
ed) with a selected analyte. Analytes from the optimal parameter that were sensitive to parameter choice 
(present in <50% of  the parameter sets tested) were removed from the final list of  analytes.

Data and code availability. Code for the analytical tool is available on GitHub at https://github.com/
FredHutch/JDRFCAV using branch name “master” and commit ID 905178c, along with data necessary 
to recreate the analyses presented here. Whole-genome data (cell subset RNA-Seq and transcriptional 
response to serum assays, as well as all replicate testing data) are available in the NCBI GEO database 
under accession number GSE131528. Whole-blood RNA-Seq data are available in NCBI GEO under 
accession number GSE124400.

Statistics. All statistical analyses are described in the Analyte Selection Tool section of  Methods.
Study approval. All human studies were approved by appropriate institutional review boards. ITN stud-

ies were approved by independent IRBs at each participating clinical site, as described in the original clin-
ical trial reports (25–27). Use of  human samples for assay replicate testing was approved by the Benaroya 
Research Institute IRB. Written informed consent was received from all participants in all cohorts before 
inclusion in the study.
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