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Introduction
Macrophages perform multiple functions during acute inflammation, including production of  inflammato-
ry cytokines, phagocytosis of  cellular debris, and production of  reparative molecules (1–7). As such, they 
are attractive candidates for therapeutic intervention in inflammatory diseases. To date, however, targeting 
of  macrophages has been hindered by lack of  precise understanding of  their dynamic programs in inflamed 
tissues. For instance, it is unclear whether the seemingly divergent inflammatory and reparative functions 
are performed by macrophages within a shared microenvironment or whether discrete populations of  mac-
rophages provide division of  labor during acute inflammation.

In virtually all tissues, 2 main subsets of  macrophages exist during acute inflammation. These 
include resident macrophages, which populate the tissues during homeostasis, and recruited macro-
phages that arise from circulating monocytes. In the lungs, resident airspace macrophages (RAMs) arise 
during embryogenesis and self-renew throughout life without replacement from circulating monocytes. 
They reside in the airspaces prior to the onset of  inflammation, persist during the entirety of  the inflam-
matory response, and remain after it resolves (8–11). In comparison, recruited airspace macrophages 
(RecAMs) originate from the BM, traffic to the site of  inflammation, and ultimately undergo apoptosis 
(10, 12, 13). Based on bulk RNA sequencing (RNA-seq), we recently demonstrated that, during endo-
toxin-induced acute inflammation, RAMs proliferate locally and have relatively stable programing (14). 
Conversely, the programing of  RecAMs is dynamic and is characterized by production of  proinflam-
matory cytokines during peak inflammation and expression of  reparative factors during lung repair. 
However, whether these functions are shared by all cells within each group, or whether intragroup 
subspecialization of  function occurs, remains unknown.

Macrophage programing has traditionally been described along a dichotomous spectrum of  polariza-
tion. Historically, macrophage polarization denoted the opposing responses of  cells to different pathogens 
— M1 programing described the response to bacterial or viral infections, often modeled in vitro with LPS 

Macrophages are well recognized for their dual roles in orchestrating inflammatory responses and 
regulating tissue repair. In almost all acutely inflamed tissues, 2 main subclasses of macrophages 
coexist. These include embryonically derived resident tissue macrophages and BM-derived 
recruited macrophages. While it is clear that macrophage subsets categorized in this fashion display 
distinct transcriptional and functional profiles, whether all cells within these categories and in the 
same inflammatory microenvironment share similar functions or whether further specialization 
exists has not been determined. To investigate inflammatory macrophage heterogeneity on a 
more granular level, we induced acute lung inflammation in mice and performed single cell RNA 
sequencing of macrophages isolated from the airspaces during health, peak inflammation, and 
resolution of inflammation. In doing so, we confirm that cell origin is the major determinant 
of alveolar macrophage (AM) programing, and, to our knowledge, we describe 2 previously 
uncharacterized, transcriptionally distinct subdivisions of AMs based on proliferative capacity and 
inflammatory programing.
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or IFN-γ, while M2 programing described the response to parasitic infections, often modeled by exposure 
to IL-4 or IL-13 (15, 16). Later, similarities in features of  M2 programing and those present during wound 
repair led to the evolution of  “M2” as a descriptor of  reparative, antiinflammatory macrophages (5, 17, 18). 
Innumerable studies have sought to identify specific markers of  these polarization states and have ascribed 
phenotypes to macrophages using selected genes or gene products. However, recent evidence suggests that 
macrophage programing is multidimensional, dynamic, and exceedingly complex and, therefore, unsuitable 
for a simplified, bipolar scheme (19, 20). To date, whether specific proinflammatory or antiinflammatory 
programs correlate with markers of  macrophage polarization has not been determined at the single cell level.

In this study, we aimed to identify heterogeneity within the inflammatory alveolar macrophage (AM) 
pool at single cell resolution. We used single cell RNA-seq to explore the transcriptional signatures of  AMs 
within the murine lung during 3 discrete time points: homeostasis, peak neutrophilic inflammation, and 
resolution of  inflammation. In doing so, we confirm that cell origin drives AM heterogeneity and describe 2 
previously unrecognized subgroups of  RAM and RecAM cells specializing in proliferation and inflammato-
ry signaling, respectively.

Results
Single cell transcriptional profiling identifies 5 discrete AM populations across homeostasis, acute inflammation, and 
resolving inflammation. We performed single cell RNA-seq of  all macrophages isolated from the airspaces 
of  C57BL/6 mice treated with intratracheal LPS. Three time points, representing homeostasis (day 0), 
peak of  neutrophilic inflammation (day 3), and resolution of  inflammation (day 6) were analyzed (12, 
21). DAPI–, Ly6g–, F480+, CD64+ cells (containing both resident and recruited AM subsets) were isolated 
from lavage using FACS (Supplemental Figure 1; supplemental material available online with this article; 
https://doi.org/10.1172/jci.insight.126556DS1). We analyzed profiles from 902 cells that passed strict 
quality control thresholds and used a combination of  t-distributed stochastic neighbor embedding (tSNE) 
and shared nearest neighbor clustering carried out with the 5,784 most variant genes across cells from all 
time points to identify robust cell clusters.

Five transcriptionally distinct clusters were revealed (Figure 1A). All clusters expressed macro-
phage-specific markers, including CD68, Lgals3, Marco, and MerTK (Figure 1B). Overlaying time course 
information on the tSNE plot revealed that clusters 1 and 2 contained AMs from each of  the 3 time points. 
In comparison, clusters 3 and 4 were composed almost exclusively of  AMs from day 3, whereas cluster 5 
contained AMs from day 6 (Figure 1C). During homeostasis, more than 90% of  cells belonged to cluster 1, 
while nearly all remaining cells were in cluster 2 (Figure 1D). In contrast, during peak inflammation (day 
3), the majority of  cells were members of  clusters 3 or 4, with the remainder coming from clusters 1 and 
2. During the resolution of  inflammation (day 6), clusters 3 and 4 essentially disappeared from the sample, 
and cells were segregated to cluster 5 (40%) or clusters 1 and 2 (59%).

AM populations revealed by single cell RNA-seq reflect cell origin. Since clusters 1 and 2 were present during 
homeostasis and remained throughout the inflammatory time points, we hypothesized that these popula-
tions represented the RAMs. Likewise, we postulated that clusters 3, 4, and 5 largely consisted of  RecAMs, 
as they were only present during inflammation. To test these characterizations, we examined whether 
known RAM and RecAM markers were differentially expressed between the 2 hypothesized groups. We 
found that RAM marker genes, including Mrc1 (CD206), Itgax (CD11c), SiglecF, and Siglec1 (CD169) (9, 14, 
22), were significantly upregulated in clusters 1 and 2 compared with clusters 3, 4, and 5. In comparison, 
RecAM marker genes, including CD14, Ly6c1 (Ly6c), ApoE, Ccr5, Mafb, and Sell (L-selectin) (9, 14, 23), 
were significantly upregulated in clusters 3, 4, and 5 compared with clusters 1 and 2 (Figure 2, A and B). 
Furthermore, mean expression across the panel of  RAM markers was 1.6-fold higher in clusters 1 and 2, 
whereas mean expression of  the panel of  RecAM markers was 1.4-fold higher in clusters 3, 4, and 5 (Figure 
2, B and C). This confirms that cell origin is a major determinant of  AM heterogeneity.

Macrophage polarization states are not mutually exclusive and reflect cell origin. The presence of  subgroups 
within the populations expressing RAM markers (clusters 1 and 2) and RecAM markers (clusters 3 and 
4) during peak inflammation led us to question whether this heterogeneity could be ascribed to classically 
activated (M1) or alternatively activated (M2) polarization states (24). We first examined the expression of 
Nos2 and Arg1, two commonly used markers to distinguish M1 and M2 activation states (25, 26). Expression 
of  both enzymes was observed in all cell clusters but was greatest in cluster 3 (Figure 3, A and B). Although 
M1 and M2 activation states and their corresponding transcriptional markers are often considered to be 

https://doi.org/10.1172/jci.insight.126556
https://insight.jci.org/articles/view/126556#sd
https://doi.org/10.1172/jci.insight.126556DS1


3insight.jci.org      https://doi.org/10.1172/jci.insight.126556

R E S E A R C H  A R T I C L E

mutually exclusive (24, 26–29), we observed extensive coexpression of  Arg1 and Nos2 within the same cells 
(Figure 3C), consistent with nonexclusivity of  M1 and M2 programing that has been suggested by our group 
and others (30–33). We next examined the mean expression of  a comprehensive panel of  traditional M1 and 
M2 markers across clusters and found that clusters 1 and 2 exhibited 1.3-fold higher expression of  M2 genes 
compared with clusters 3 and 4, while clusters 3 and 4 expressed M1 genes at a 1.2-fold higher level com-
pared with clusters 1 and 2 (Figure 3D). Thus, cells expressing RecAM markers at peak inflammation had 
the highest expression of  M1 genes, whereas cells expressing RAM markers during both homeostasis and 
inflammatory time points expressed the highest levels of  M2 genes. Notably, cluster 5 exhibited relatively 
low expression of  both M1 and M2 genes. Taken as a whole, these data show that aggregate expression of  
M1 and M2 genes corresponds closely to cell origin, irrespective of  inflammatory time points.

Because homeostatic RAMs (day 0) should not be activated, we next examined mean expression of  
the gene panels across clusters and days using homeostatic RAMs (day 0) as a reference. We found that 
mean expression of  M2 panel genes was similar across all time points for cells expressing RAM markers 
and was unchanged from homeostasis (Figure 3E). Conversely, mean expression of  M2 panel genes was 
lower in cells expressing RecAM markers. Interestingly, cells expressing either RAM or RecAM markers 
at day 3 showed increased expression of  M1 genes compared with day 0. Thus, cells that express RAM 
markers at day 3 exhibit dual expression of  both M1 and M2 panel genes, although expression of  the lat-
ter is similar to homeostatic RAMs. Notably, there was no correlation between Arg1 expression and M2 
panel genes or Nos2 expression and M1 panel genes. Together, these data demonstrate that expression 
of  M1 and M2 genes is not mutually exclusive and that single genes cannot be used to ascribe discrete 
polarization states to macrophages.

Resident AMs contain a proliferative subpopulation present during health and inflammation. As a next step, 
we sought to define the characteristics that distinguish individual clusters. We started with clusters 1 
and 2 since they contained cells from all time points and had similar expression of  RAM and polariza-
tion markers. In comparison with clusters 3, 4, and 5, cluster 1 contained 314 genes with significantly 
elevated expression and cluster 2 contained 572 such genes. Of  these differentially expressed genes 

Figure 1. Single cell transcriptional profiling identifies 5 discrete AM populations across homeostasis, acute 
inflammation, and resolving inflammation. Mice were treated with intratracheal LPS and macrophages were isolated 
from lavage at days 0 (homeostasis), 3 (peak neutrophil inflammation), and 6 (resolution of lung inflammation). (A) 
T-distributed stochastic neighbor embedding (tSNE) plot shows clustering of 902 cells based on gene expression. Point 
coordinates are based on tSNE dimensionality reduction of the top 6 principal components calculated from the 5,784 
most informative genes. Cell color specifies assignment of cells to 1 of 5 clusters (c1–5) inferred using shared nearest 
neighbor clustering. (B) Normalized expression of macrophage markers overlaid on tSNE plot. (C) Time course informa-
tion overlaid on tSNE plot. (D) Relative proportion of cells in each cluster versus time.
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(DEGs), 182 were shared between clusters 1 and 2. Pathway analysis of  DEGs from cluster 1 identified 
pathways known to be important for RAM programing, such as PPAR signaling, lipid metabolism, and 
protein processing in the ER (Figure 4A and Supplemental Table 1) (34, 35). DEGs from cluster 2 were 
enriched for similar annotations (Figure 4A), along with multiple proliferation and cell cycle pathways 
(Figure 4B and Supplemental Table 2).

We next compared clusters 1 and 2. Intriguingly, cluster 1 contained no DEGs compared with clus-
ter 2. By contrast, cluster 2 exhibited 469 upregulated DEGs, the top 3 of  which were Ki67, Pclaf, and 
topoisomerase II α (Top2a) (Figure 4, C–E, and Supplemental Table 3). Widely recognized as markers of  
cell proliferation, these genes were significantly upregulated in cluster 2 compared with the other clusters 
in the dataset. Notably, cluster 2 contained 6.5% of  cells analyzed at day 0, 6.9% at day 3, and 2.1% at day 
6 (Figure 1D) These data are consistent with previously published reports of  RAM proliferation based on 
Ki67 staining, BrdU incorporation, or [3H]thymidine labeling (10, 14, 36)

Since the vast majority of DEGs in cluster 2 were involved in regulation of the cell cycle, we sought to con-
firm that these genes were principally responsible for the separation of this cluster. Accordingly, the expression 
signature of proliferation was regressed out of the dataset, after which clustering was reperformed. As shown 
in Figure 4, F–H, this resulted in the disappearance of the original cluster 2 and the reassignment of most of  
its members to cluster 1, suggesting that proliferation genes were largely what separated cluster 2 from other 
cells in cluster 1. Together, these data identify, for the first time to our knowledge, a dedicated subpopulation of  
proliferative AMs, with an expression profile characteristic of RAMs, present during health and disease.

Although clusters 1 and 2 contained cells isolated from 3 vastly different microenvironments (i.e., days 
0, 3, and 6 of  inflammation), relatively little partitioning of  cells was apparent on the tSNE plot (Figure 
1C). However, quantitative assessment of  DEGs in cluster 1 revealed upregulation of  53, 414, and 39 genes 
at days 0, 3, and 6 (compared with the other time points), respectively. The DEGs at day 0 were enriched 
in pathways for lipid metabolism and transcription (Supplemental Table 4). Cells from day 3 were the most 

Figure 2. AM populations revealed by single cell RNA-seq reflect cell origin. (A) Relative expression of Mrc1 and CD14 
overlaid on tSNE plot. Cells that express both markers are turquoise. High versus low expression is defined relative to the 
85th percentile. (B) Bubble plot comparing expression of resident (blue) and recruited (red) biomarkers across the 5 mac-
rophage clusters. Bubble size is proportional to percentage of cells in a cluster expressing a gene, and color intensity is 
proportional to average scaled gene expression within a cluster. (C) Summary expression of 4 resident biomarkers (Mrc1, 
Itgax, Siglecf, and Siglec1) and 6 recruited biomarkers (Cd14, Ly6c1, Apoe, Ccr5, Mafb, and Sell) overlaid on tSNE plot.
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unique, with enrichment of  pathways related to proteasome function, TLR signaling, and aerobic metab-
olism (Supplemental Table 5). At day 6, pathways for posttranslational modifications of  proteins were 
enriched (Supplemental Table 6). Because cluster 2 contained only 43 cells, similar analyses of  DEGs over 
time were limited by statistical power. However, a similar trend in DEGs across time points was observed in 
cluster 2. Taken as a whole, these data demonstrate that cluster 1 cells maintain their RAM identify while 
modifying gene function to fit the changing microenviroment posed by inflammation.

Macrophage subsets are identified during inflammation. We next investigated the defining characteris-
tics of  clusters 3 and 4, which exhibited profiles typical of  RecAMs and were only present during 
peak inflammation. Comparison of  clusters 3 and 4 with other clusters yielded 574 upregulated genes. 
Top pathways enriched with these DEGs involved inflammation-related terms such as NF-κB signaling 
pathway, TLR signaling, IFN signaling, and the ER-phagosome pathway (Figure 5A and Supplemental 
Table 7). Pathway analysis of  543 DEGs upregulated in cluster 3 compared with cluster 4 showed that 
cluster 3 is distinguished by proteolysis, antigen presentation, and oxidative metabolism (Figure 5B and 
Supplemental Table 8). In contrast, the 43 genes with increased expression in cluster 4 compared with 
cluster 3 were enriched in pathways specific to proinflammatory cytokine production and cell survival 
(Figure 5C and Supplemental Table 9), suggesting that these cells are specialized for inflammatory sig-
naling. Gene level analysis confirmed elevated expression of  several important inflammatory cytokines 

Figure 3. Macrophage polarization states are not mutually exclusive and reflect cell origin. (A) Cells with high expression of Arg1 and/or Nos2 overlaid on 
tSNE plot (high versus low expression defined relative to the 85th percentile). (B) Bubble plot shows relative expression of M2 (blue) and M1 (red) markers 
across clusters. Bubble size is proportional to percentage of cells expressing a gene, and color intensity is proportional to average scaled gene expression 
within a cluster. (C) Coexpression of Arg1 and Nos2 shown as square root–transformed expression of one gene against the other. Sample color denotes 
cluster from Figure 1A. (D) Summary expression of genes from B overlaid on tSNE plot. (E and F) Mean normalized expression of M2 (E) and M1 (F) markers 
relative to homeostatic RAMs. Data are shown across days for RAMs and clusters for RecAMs. Relative-to-baseline expression obtained by subtracting 
median value observed in clusters 1 and 2 at day 0.
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in cluster 4, including Cxcl2, IL1b, and Tnf (Figure 5, D–F). Together, these data identify 2 distinct 
clusters of  cells that express RecAM markers at the peak of  inflammation: 1 defined by inflammatory 
cytokine production and 1 defined by protein processing and proteasome functions. Intriguingly, while 
RecAMs are known to undergo apoptosis (12, 13), these 2 clusters have differential expression of  apop-
totic genes, suggesting that they may also have different propensities for programed cell death. To our 
knowledge, such subsets have not been previously described.

In contrast to the 2 RecAM marker–enriched clusters present at peak inflammation, cluster 5, which 
contained the RecAM-like cells present at day 6, was distinguished from all other clusters by upregulation 
of  450 DEGs enriched in pathways involved in production of  growth factors, secretory granule formation, 
lysosome processing, and PIK3-AKT signaling (Figure 5G and Supplemental Table 10). In addition, path-
ways important for actin binding and cell migration were also identified. Further analysis of  gene expres-
sion variation within cluster 5 did not reveal further subclustering of  cells.

Unique transcriptional programs define macrophage subsets. Having identified genes that distinguished 
clusters from one another, we next plotted the scaled expression of  the top DEGs in each cluster across 
all cells to visualize the extent to which patterns of  expression among these cluster-defining genes were 
shared or unique in respect to other clusters (Figure 6 and Supplemental Table 11). Examination of  the 
resultant heat map confirmed that genes related to cell cycle were almost exclusively expressed in cluster 2. 
In comparison, the DEGs that defined cluster 1 were also expressed by cells from cluster 2. Likewise, the 
DEGs that defined cluster 4 were also expressed by cells cluster 3, whereas the proinflammatory DEGs 
that defined cluster 3 were less highly expressed by cells in cluster 4 and downregulated in other clusters. 

Figure 4. Resident AMs contain a proliferative subpopulation present during health and inflammation. (A and B) Mean normalized expression of 
genes annotated for enriched pathways indicated that they were also upregulated in cluster 1 (A) or cluster 2 (B) when compared with RecAM clusters. 
(C–E) Normalized expression of 3 classic markers of proliferation overlaid onto tSNE plot. (F–H) Characterization of proliferating RAMs in cluster 2 after 
statistically removing expression heterogeneity related to cell cycle from dataset. (F) t-SNE plot–based scaled residual expression obtained from model-
ing relationship between gene expression and estimated cell cycle score. Cells colored based on original clusters in Figure 1A. (G) Time course information 
overlaid on new t-SNE plot. (H) Distribution of cells from original proliferation cluster across new clusters inferred using cell cycle–corrected dataset. New 
clusters were broadly similar to original clusters and were, thus, named and colored to match cluster analogs in Figure 1A.
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Finally, genes encoding the growth factors and reparative molecules during resolution phase RecAM in 
cluster 5 were slightly increased in RAM (clusters 1 and 2) but were not increased in the RecAM clusters 
that dominated during peak inflammation (clusters 3 and 4). As a whole, these patterns illustrate that 
each cluster is defined by a unique transcriptional program that imparts specific functions and divisions of  
labor throughout the inflammatory process.

Gene networks from bulk RNA-seq are coexpressed within single cell RNA-seq–based clusters. Because single cell 
sequencing is inherently prone to dropout, or incomplete detection of  genes expressed at low levels, we 
sought to integrate our single cell data with our previously published bulk RNA-seq of  RAMs and RecAMs 
(14, 37). In this way, we aimed to infer a more complete transcriptional profile to our newly identified single 
cell clusters. In addition, by comparing the 2 datasets, we sought to determine the extent that clustering of  
our single cell data explained the coregulation of  genes identified in our bulk dataset and validate that cell 
origin is a major determinant of  AM programing. Finally, we assessed the technical reproducibility of  data 
from the 2 sequencing platforms using the same model system.

We first compared the transcriptional content of  the single cell dataset with our previously published 
bulk RNA-seq data of  RAMs and RecAMs sorted from bronchoalveolar lavage (BAL) at equivalent time 
points following LPS-induced inflammation (14). Overall, 3,494 quality controlled (QCed) genes in the 
bulk dataset were not present in the QCed single cell dataset, of  which 1,521 had conanoical gene names. 
Although the majority of  these missing genes were expressed at low levels in the bulk dataset, 148 of  these 
genes were detected at levels above the median level of  expression of  the bulk data. While pathway analyses 

Figure 5. Macrophage subsets are identified during inflammation. (A–C) Bar graphs comparing mean normalized expression. Mean normalized 
expression of genes annotated for enriched pathways upregulated in clusters 3 and 4 together when compared with all other clusters (A), or cluster 
3 (B) or cluster 4 (C) when compared with each other. (D–F) Normalized expression of 3 inflammatory cytokines overlaid on tSNE plot. (G) Bar plots 
comparing mean normalized expression of genes annotated for enriched pathways upregulated in cluster 5 when compared with all other clusters.
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of  these genes did yield enrichments, several genes encoding important macrophage effector proteins were 
identified (Myd88 and Tlr9), suggesting that they were prone to dropout with single cell technology.

We next performed weighted gene coexpression network analysis (WGCNA) of  the bulk RNA-seq 
data. Eleven distinct gene coexpression networks were identified based on samples collected at days 0, 
3, and 6 (Supplemental Figure 2), 3 of  which were upregulated in RAMs, 5 of  which were upregulated 
in RecAMs, and 3 of  which were upregulated in cells belonging to both groups (Supplemental Figure 3). 
Overall, a strong correlation between bulk and single cell heterogeneity was observed, with cells expressing 
a given network largely limited to 1 or 2 clusters.

Pathway analysis carried out on gene networks also revealed broad correspondence between bulk and 
single cell datasets (Figure 7, Table 1, and Supplemental Table 12), while enhancing understanding of  the 
processes and genes that define cell clusters. For instance, 2 networks were characteristic of  RecAMs at 
day 3: one network was enriched in inflammatory signaling pathways, glucose metabolism, and apoptosis 
pathways (Figure 7D), while another was enriched in proteasome activity, IFN signaling, and mitochon-
drial respiration (Figure 7E). Interestingly, there was no major difference in the average expression of  these 
2 networks between single cell clusters 3 and 4, even though pathway analysis based on DEGs from the 
clusters (Figure 4B) predicts that these networks would define them.

Two networks were most highly expressed among RecAMs at day 6 in the bulk dataset, both of  
which were enriched for pathways involved in cell growth and repair (Figure 7, F–G). Both networks 
were highly and near exclusively expressed by cluster 5 of  the single cell dataset.

Three networks were characteristic of  RAMs. One network had pathways enriched in lipid metabolism 
and PPAR signaling and was expressed most highly among day 0 cells contained within clusters 1 and 2 
(Figure 7A). Likewise, another network, enriched in pathways related to RNA modification, mitochondrial 
respiration, and proteasome activity, was most highly expressed in RAMs at day 3 (Figure 7B). This network 
appeared to be driven primarily by environment, rather than cell origin, in that its expression was more 
similar to RecAMs from the same time point (clusters 3 and 4) compared with RAMs at other time points. 

Figure 6. Expression of identified gene sets distinguishes clusters. Scaled expression of top 30 differentially 
expressed genes from each cluster. Individual cells are represented on the horizontal axis and grouped by cluster and 
day of inflammation.
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The third network, enriched in cell proliferation genes, was strongly characteristic of  cluster 2 (Figure 7C).
By comparing coregulated gene networks in both bulk and single cell datasets, the relative contributions 

of  cell origin and environment to the overall heterogeneity and discrete functions that define each AM clus-
ter can begin to be ascertained. Further, given the high overlap of  bulk RNA-seq–defined modules, which 
contained many genes not detected by the single cell sequencing platform, the integration of  these technol-
ogies provides significantly more genic definition to the single cell dataset and validates this approach to 
more fully inform the biology of  single cell populations.

Discussion
In this study, we applied single cell RNA-seq technology to reexamine and refine our previous character-
ization of  AM heterogeneity in a self-resolving model of  lung inflammation. In doing so, we have iden-
tified 5 discrete populations of  airspace macrophages that exist in the lungs during acute inflammation, 
each with unique transcriptional signatures and putative functions. Three populations contain cells that 
express RecAM markers and are only present during inflammation, whereas 2 populations that contain 
cells that express RAM markers are present during both inflammation and homeostasis. While this study 
is not sufficient to prove cell origin, together with our previous finding that embryonic versus postnatal 
origin dictates the majority of  AM programing, it provides compelling supporting evidence. Further, 
we have identified additional determinants of  cell heterogeneity. This includes a proliferative subset of  
RAMs that is present during all time points and potentially novel subsets of  proinflammatory and pro-
teolytic RecAMs present only during peak inflammation. A uniform group of  reparative RecAMs pres-
ent during resolution of  inflammation is also identified.

The existence of  a proliferative pool of  RAMs is consistent with their known self-renewing properties 
(10, 36, 38–42). RAMs populate the airspaces during embryogenesis and maintain a steady population 
throughout life with little contribution from BM-derived cells (11). During acute inflammation, they con-
tinue to proliferate and remain after inflammation has resolved. To our knowledge, our data provide the 

Figure 7. Gene networks from bulk RNA-seq are coexpressed within single cell RNA-seq–based clusters. (A–G) Seven coexpressed gene networks derived 
from bulk RNA-seq data exhibit peak expression within single cell–derived resident (A–C) or recruited (D–G) macrophage clusters (see also Supplemental 
Figure 3). For each network, mean scaled eigengene expression is shown across bulk RNA-seq resident and recruited AMs from each day (heatmaps). For 
comparison with the single cell dataset, relative eigengene expression of each network is overlaid onto the single cell tSNE plot. Select results from path-
way analysis of each network are shown in Table 1.
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first transcriptional characterization of  the proliferative subset of  RAMs during both health and disease. As 
has been previously shown, we found overall low expression of transcriptional repressors of  proliferation, 
Mafb and Maf  (cMaf), in RAMs (43). However, in contrast to macrophages in other organs, levels of  Mafb 
and Maf were not further decreased in actively proliferating (cluster 2) versus quiescent (cluster 1) RAM 
subsets (43). Rather, our data demonstrate that Mafb and Maf  gene expression levels are largely unchanged 
throughout inflammation. Notably, our data do not distinguish between a specialized stem-like population 
of  cells or, as suggested by previous studies, a regular proportion of  cells stochastically entering and leaving 

Table 1. Functional descriptions of WGCNA networks

Network Functional summaries Enriched terms Gene set Overlap FDR
A Metabolism of lipids and other 

macromolecules
Metabolism of lipids and lipoproteins Reactome 125/659 9.05 × 10–11

Peroxisome GO (CC) 36/94 3.76 × 10–11

Fatty acid metabolism KEGG 21/48 9.88 × 10–8

Peroxisomal lipid metabolism Reactome 12/27 3.06 × 10–4

B RNA modification mRNA splicing — major pathway Reactome 26/134 5.77 × 10–11

Spliceosome KEGG 23/134 9.94 × 10–9

Metabolism Mitochondrial inner membrane GO (CC) 40/330 1.48 × 10–10

The citric acid (TCA) cycle and RET Reactome 22/153 3.62 × 10–7

Respiratory electron transport Reactome 15/109 9.68 × 10–5

Protein modification and transport Protein processing in ER KEGG 23/169 5.59 × 10–7

Asparagine N-linked glycosylation Reactome 26/259 2.10 × 10–5

ER to golgi anterograde transport Reactome 15/131 4.76 × 10–4

Vesicle-mediated transport Reactome 32/492 1.38 × 10–3

ER stress/unfolded protein 
response (UPR)

IRE1-mediated unfolded protein response GO (BP) 9/57 4.04 × 10–3

UPR Reactome 10/86 3.70 × 10–3

XBP1(S) activates chaperone genes Reactome 7/53 1.06 × 10–2

Proteasome Antigen processing-cross presentation Reactome 13/82 9.68 × 10–5

Proteasome KEGG 8/44 1.69 × 10–3

C Cell proliferation Cell cycle Reactome 164/566 6.72 × 10–88

DNA replication GO (BP) 53/106 1.21 × 10–40

Centrosome GO (CC) 61/401 1.52 × 10–15

D Immune signaling Cytokine signaling in immune system Reactome 107/620 1.60 × 10–20

TNF signaling pathway KEGG 36/110 2.92 × 10–15

TLR signaling pathway KEGG 30/106 2.31 × 10–11

NF-κB signaling pathway KEGG 27/93 1.46 × 10–10

Glycolysis HIF-1 signaling pathway KEGG 24/103 1.34 × 10–7

Glycolysis Reactome 12/32 1.43 × 10–5

Glucose metabolism Reactome 16/79 6.17 × 10–4

Apoptosis Apoptosis KEGG 26/140 2.95 × 10–6

Extrinsic apoptotic signaling pathway GO (BP) 9/29 2.12 × 10–3

Programmed cell death Reactome 20/166 2.01 × 10–2

E Proteasome Proteasome KEGG 25/44 1.51 × 10–25

Antigen processing-cross presentation Reactome 27/82 6.99 × 10–21

IFN signaling Cytokine signaling in immune system Reactome 57/620 2.16 × 10–14

IFN signaling Reactome 20/196 3.48 × 10–6

Metabolism Oxidative phosphorylation KEGG 22/133 1.29 × 10–9

Respiratory electron transport Reactome 17/88 1.94 × 10–9

F Cell growth and repair Lysosome KEGG 16/123 4.62 × 10–3

Signaling by EGFR Reactome 29/355 1.73 × 10–2

Signaling by PDGF/FGFR1 Reactome 28/364 1.99 × 10–2

Signaling by VEGF Reactome 24/328 5.45 × 10–2

PI3K/AKT activation Reactome 19/125 1.54 × 10–2

mTOR signaling pathway KEGG 12/60 2.27 × 10–2
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the cell cycle (10, 36) Because the proliferative RAMs we identified show only minor changes in expression 
of  gene transcripts that encode cell surface proteins, studies using cell labeling techniques or proliferation 
reporters will likely be required to further investigate the specific stimuli that signal AMs to maintain the 
niche during homeostasis and inflammation.

Strikingly, despite existing in drastically different microenvironments during homeostasis, peak 
inflammation, and lung repair, RAMs displayed remarkably stable programing. The largest differences 
among RAMs were observed at peak inflammation, where proteasome and immune response genes were 
upregulated, echoing the concomitant but more dramatic patterns observed in RecAMs. While it is possi-
ble that direct exposure to LPS had significant effects on the transcriptional signature of  RAMs at earlier 
time points that were not included in our dataset, our study shows that, after 3 days, any major tran-
scriptional consequences of  LPS treatment have resolved, underscoring the role of  resident macrophages 
in maintenance of  tissue homeostasis (7, 8, 44). Besides highly proliferative RAMs, no other obvious 
subsets of  RAMs were detected. Specifically, we did not identify the subset of  sessile RAMs suggested by 
Westphalen et. al, which may be important in immunosuppression (2). The absence of  a sessile RAM sub-
population (characterized by high expression of  connexins and calcium signaling molecules) may reflect 
the relative ineffectiveness of  lavage for retrieving cells from the alveolus (45). Future comparison of  cell 
populations isolated from lavage versus cells isolated by lung digestion will be important to expand the 
repertoire of  AM functions during inflammation.

The finding of  2 subsets of  RecAMs during peak neutrophilic inflammation has major implications 
for macrophage programing during inflammatory lung disease. RecAMs are thought to derive from 
circulating monocytes that are recruited to inflamed tissues in response to specific chemoattractant 
molecules. RecAMs persist during inflammation and repair, then undergo apoptosis, leaving very few 
BM-derived AMs once homeostasis has been restored (11–13, 46–48). Our previous bulk RNA-seq 
data identified RecAMs as proinflammatory and suggested that they are responsible for the majori-
ty of  proinflammatory cytokines produced by macrophages during peak inflammation. However, our 
single cell data indicate that a distinct subset of  RecAMs, cluster 4, is largely responsible for cytokine 
production. In comparison, cluster 3 is characterized by expression of  enzymes involved in protein 
processing and antigen presentation, raising the possibility that cells in this cluster are programmed 
for functions distinct from those of  cluster 4 — despite existing in a shared microenvironment. Indeed, 
altered ratios of  constitutive versus immunoproteosomal subunit transcripts in cluster 4 compared with 
cluster 3 are in keeping with the emerging role of  proteosomal protease activities as master regulators 
of  the inflammatory response (49–53). Given that several of  the DEGs that distinguish cluster 4 from 
cluster 3 are also expressed in neutrophils at steady-state (S100a9, Lcn2, Il2r) (38), we considered wheth-
er this population may represent macrophage/neutrophil complexes (i.e., doublets containing 2 cells 
bound together). However, we found no differences in total expressed genes between clusters 3 and 4, 
as would be expected in the case of  cell doublets. We also considered the possibility that the cells in 
cluster 4 were macrophages that phagocytosed neutrophils. However, many other genes that are highly 
expressed in neutrophils such as Ly6G were absent. Moreover, there was no enrichment in phagocytosis 
pathways in cluster 4 versus cluster 3. Rather, the high expression of  protein processing and proteolysis 
genes in cluster 3 suggest that this population may be poised for active phagocytosis. We suspect that the 
genes in question are truly expressed by this proinflammatory macrophage subset and that this reflects 
their monocytic origin. Interrogation of  the ImmGen database (54) lends support for this concept and 
demonstrates that the genes are highly expressed by Ly6Chi BM monocytes.

In addition to differences in inflammatory programing, RecAM subclusters at day 3 may have differ-
ential cell fate. Although it is commonly believed that monocytes arrive in bulk during the initial phase of  
inflammation, it is currently unknown whether the RecAMs that exist at day 6 derive from those present 
at day 3 or whether ongoing turnover and replacement of  RecAMs occurs. One possibility is that clusters 
3 and 4 represent different phases of  monocyte influx into the lungs. In this context, cluster 3 may contain 
mature RecAMs that are destined for apoptosis prior to day 6, while cluster 4 may represent more recently 
recruited AMs that mature to reparative RecAMs at day 6. In support of  this hypothesis, cluster 3 demon-
strates increased expression of  proapoptotic caspase 8, while cluster 4 is notable for increased expression of  
antiapoptotic molecules, Bcl2L1, Ier1, mitogen-activated protein kinase 2 (MAPK2), and Mapk14 (p38) (55). 
Likewise, cluster 4 cells express high levels of  Nrf2 and its downstream products, Slc7a11 and Slpi, genes 
implicated in cytoprotective and antioxidant functions (56).
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Alternatively, the basis for heterogeneity within RecAMs may be explained by heterogeneity of  circu-
lating monocytes. Recent studies investigating monocyte progenitors have identified 2 distinct sources for 
circulating monocytes: granulocyte-monocyte progenitors (GMPs) and monocyte-DC progenitors (MDPs). 
GMPs produce neutrophil-like, inflammatory monocytes, while MDPs produce a subset of  monocyte-de-
rived DCs (57). While the markers used to identify these populations in the BM are not clearly confined to 
either clusters 3 or 4, the division of  proinflammatory cytokine production and antigen-presenting func-
tions between clusters aligns with the observed neutrophil-like GMP and DC-like MDP-derived monocyte 
phenotypes. Identification of  markers to distinguish cells within clusters 3 and 4 will allow for further study 
of  the source and fate of  these 2 subsets.

Single cell analysis allows for direct correlation of  traditional markers of  macrophage programing with 
cell function. In our LPS model, we saw the majority of  M1 marker expression present during peak inflam-
mation, with a return to baseline expression of  M1 markers during resolution of  inflammation (Figure 
3F). This trend is most pronounced in RecAMs but is also present in the RAM populations. Notably, we 
detected the expression of  several M2 activation markers in homeostatic RAMs. In fact, mean expression 
of  our panel of  M2 markers was significantly higher in naive (day 0) RAMs compared with cells captured 
at peak inflammation or resolution time points (1-sided t test P = 4.54 × 10–21 and 2.28 × 10–4, respectively). 
This invalidates these transcripts as markers of  cell activation and rather suggests that they represent mark-
ers of  the normal process of  differentiation into mature macrophages. Importantly, M2 marker expression 
did not correlate with expression of  growth factors and molecules thought to be important for tissue repair 
in cluster 5. Together, these analyses complement an emerging literature that suggests that the traditional 
M1-versus-M2 dichotomy derived from in vitro studies is inadequate in ascribing a molecular basis for the 
multidimensional, dynamic programs required for specific functions of  AMs in vivo (19, 20). Specifically, 
while Arg1 and Nos2 have been used for decades to assign phenotypes to macrophages, we show that they are 
coexpressed within the same clusters of  cells — and even in the same individual cell, as has been suggested 
previously (30–33). In our study, these markers alone, or as part of  a panel of  markers, are neither sufficiently 
sensitive nor specific to functionally characterize the cells that express them.

It is important to note that our study did not include all myeloid populations present in the lung 
lavage. For instance, while widely accepted in the literature as sensitive and specific markers of  AMs, 
the use of  F480 and CD64 for positive selection may have excluded AMs with lower expression of  these 
molecules (58). However, our previous work with reporters specific for RAM or BM-derived myeloid 
cells (12, 47) suggest that F480lo and CD64lo cells represent an insignificant portion of  AMs. Likewise, 
the goal of  this study was to focus on bona fide AMs. As such, DCs and monocytes were also excluded 
during FACS and were not analyzed. Our study included data from single animals at each time point and 
was not powered to detect macrophage heterogeneity between animals or varying levels of  inflammation.

By using the same murine model of LPS-induced lung inflammation as our prior work (14), the current 
study allowed for direct comparison and examination of reproducibility of data between single cell and bulk 
RNA-seq platforms. Using WGCNA, we have illustrated a high level of technical reproducibility between the 2 
techniques and have highlighted the added power of single cell analysis. While bulk RNA-seq identified RAMs 
and RecAMs as transcriptionally distinct cell types with different inflammatory and proliferative programs, the 
addition of single cell RNA-seq allowed for identification of additional subgroups of cells and assignment of  
putative functions to these groups. Further, sequencing of single cells allows for direct correlation of cell mark-
ers with cell function, enabling reexamination of the adequacy of traditional markers of cellular programing. 
In this study, application of single cell technologies to a murine model of lung inflammation has yielded the 
discovery of proinflammatory and proteolytic subsets of RecAM present only during peak inflammation and 
identification of a subset of proliferative RAMs during both health and disease. Our results confirm that AMs 
exist in heterogeneous populations during lung inflammation and suggest that targeting the division of labor 
between AM subgroups may provide therapeutic targets for inflammatory lung diseases.

Methods

Animal model
Animals. All mice used for RNA-seq were C57BL/6J males, age 10–12 weeks of  age, from the Jackson Lab-
oratory. This study was approved by and performed in accordance with the ethical standards of  IACUC at 
National Jewish Health.
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Acute lung inflammation model. LPS (E. coli O55:B5 from List Biological Laboratories) (20 μg) in 50 μl 
of  PBS was instilled directly into the tracheas of  mice sedated with isofluorane (Baxter) using a modified 
feeding needle (59). Mice were sacrificed using i.p. injection of  pentobarbital sodium solution.

Macrophage isolation. BAL was performed with 10 serial lavages of  1 ml PBS containing 5 mM EDTA. 
One animal was used for each time point. BAL cells were washed twice in PBS. FcγR was blocked using 
anti-CD16/CD32 (eBioscience, clone 93) for 20 minutes. For day 3 sample, neutrophils were depleted over 
a column by binding Ly6G prior to surface staining. Cells were incubated with primary antibody on ice for 
30 minutes, washed twice, and then taken to FACS. Dead cells were excluded on the basis of  scatter and 
DAPI exclusion. Monocytes were excluded based on size and light scattering characteristics (14). Anti-
bodies and cell stains used are as follows: anti-Ly6G (BioLegend, clone 1A8), anti-CD3 (Thermo Fisch-
er Scientific, clone 17A2), anti-CD19 (Thermo Fischer Scientific, clone eBio1D3), anti-NK1.1 (Thermo 
Fischer Scientific, clone PK136), DAPI (BioLegend, catalog 422801), anti-CD64 (BD Biosciences, clone 
X54-5/7.1), anti-CD11c (Thermo Fischer Scientific, clone N418), anti-CD11b (Thermo Fischer Scientific, 
clone M1/70), and anti-F4/80 (Thermo Fischer Scientific, clone BM8). FACS was performed using a BD 
FACSAria Cell Sorting System with BD FACSDiva Software (BD Biosciences) on unfixed specimens.

Single cell RNA isolation and sequencing. Sorted cells were dispensed into a 5,184-nanowell version 1 
microchip using the ICELL8 platform (WaferGen Biosystems) from which single cells were selected for 
library preparation and sequencing. Library preparation was carried out using ICell8 single-cell poly-(A)+ 
transcriptome amplification hands-on workflow (with Triton X-100 for cell lysis), protocol D07-000040-
003 rev4. Libraries were generated for a total of  1,134 selected cells, which were then sequenced as 100 bp 
single-end reads on an Illumina HiSeq 2500 in 3 batches (2 flow cell lanes per run). 

Data and software availability
All datasets have been deposited in the National Center for Biotechnology Information/Gene Expression 
Omnibus (GEO) under accession number GSE120000.

Statistics
Preprocessing of  single cell RNA-seq data. Raw cDNA reads in FASTQ files were trimmed using Cutadapt 
(60), where 5′ and 3′ quality trimming was carried out (q < 20) and both poly A tails and reads shorter than 
25 bp were removed. Trimmed reads were aligned to the GRCm38/mm10 genome with GSNAP, setting 
“max-mismatches=0.05” and accounting for both known Ensembl splice sites and SNPs. We quantified 
gene expression using HTSeq with “stranded=yes”, “mode=intersection-nonempty”, and “t=gene.” We 
summed the number of  unique molecular identifiers (UMIs) for each gene across runs to obtain a UMI 
count matrix that we used for all downstream analysis.

We quantified the number of  genes with expression greater than zero in each cell and then removed 
222 cells expressing fewer than 2,000 genes. Although samples comprising multiple cells were removed 
during the cell selection stage, to safeguard against undetected doublets, we removed 7 outlier cells express-
ing >11,800 genes or >90,000 UMIs. We removed 3 additional cells for which <40% of  original reads 
mapped to a unique gene-annotated region. All remaining cells exhibited unique mapping rates >50% and 
expressed genes of  which <30% were aligned to the mitochondrial genome. Prior to downstream analysis, 
we also removed select mitochondrial and ribosomal genes (those beginning with Mtat, Mt-, Mrpl, Mrps, 
Rpl, and Rps) and very lowly expressed genes (those genes not expressed in at least 0.5% of  cells).

The final QCed dataset contained 902 cells with a mean of  20,199 UMIs and 4,832 genes per cell. To 
account for differences in coverage across cells, we normalized UMI counts by dividing each by the sum of  
its cell’s UMIs, multiplying by 10,000, and then taking the log. For input into dimensionality reduction and 
clustering analyses and for plotting relative expression in heatmaps and bubble plots, we also fitted normal-
ized expression of  each gene to the sum of  the UMI counts per cell and then mean centered (subtracted from 
each gene count the average expression of  that gene) and scaled (divided each centered gene count by that 
gene’s SD) the residuals. We used the Seurat R package (61) to carry out data normalization and scaling, as 
well as downstream dimensionality reduction, clustering, tSNE plot overlaying, and differential expression.

Dimensionality reduction and clustering. We focused on the most informative genes for use in dimensionali-
ty reduction. To obtain these, we modeled the relationship between mean expression and the log of  the ratio 
of  expression variance to its mean (dispersion) and then selected the 5,784 genes for which fitted dispersion 
was >0.2 and mean expression was >0.15. We subjected these variable genes to principal component (PC) 
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analysis and then, based on visualizing a relative leveling off  of  the SD across PCs, we selected the top 6 PCs 
for subsequent clustering and visualization. To reduce dimensionality further, we carried out the Barnes-Hut 
implementation of  t-distributed neighborhood embedding (tSNE) based on the top 6 PCs and plotted this 
embedding in 2-dimensional space (perplexity, 50; number of  iterations, 1,000).

We clustered single cells in an unsupervised manner based on their expression by first constructing a 
shared nearest neighbor graph based on k-nearest neighbors calculated from the first 6 PCs of  the scaled 
data (k = 30). The number of  clusters was then determined using a modularity function optimizer based on 
the Louvain algorithm (resolution, 0.465).

To remove the cell cycle signature from the dataset, we used Seurat to calculate a cell cycle score for 
each cell based on mean expression across a list of  S and G2/M markers compiled by Tirosh et al. (62). 
We then performed dimensionality reduction and clustering using scaled residual expression obtained from 
modeling the relationship between gene expression and cell cycle score.

Plotting expression across cells. For overlaying expression onto the tSNE plot for single genes or for the 
average across a single panel of  genes, we plotted normalized expression along a continuous color scale, 
with the extreme color values being set to the 5th and 95th quantile expression values. For module expres-
sion overlays in Figure 7, we plotted eigengene expression (eigenvectors from the first PC of  a given net-
work’s gene expression) rather than mean expression. For plotting the expression of  2 genes on a single 
plot, “high” versus “low” expression for 1 or both genes was relative to the 85th quantile of  normalized 
expression. The bubble plot and heatmap show scaled normalized expression along a continuous color 
scale. We produced the heatmap in Figure 6 using Heatmap3 (63).

Differential expression analysis. Differential expression for each gene between various groups specified in 
the text was tested using a nonparametric Wilcoxon rank sum test. We limited each comparison to genes 
exhibiting both an estimated log fold change >0.25 and detectable expression in >10% of cells in 1 of  the 2 
clusters being compared. We corrected for multiple hypothesis testing by calculating FDR-adjusted P values. 
Genes were considered to be differentially expressed when FDR < 0.05. To create the heatmap in Figure 6, we 
carried out differential expression analysis between each of  the 5 focal clusters and other individual clusters 
of  comparative interest, based on our previous characterization of  clusters using biomarkers of  cell origin 
and state. Specifically, we compared cluster 1 with cluster 3, cluster 4, and cluster 5; cluster 2 with cluster 1; 
cluster 3 with cluster 1, cluster 4, and cluster 5; cluster 4 with cluster 1 and cluster 3; and cluster 5 with cluster 
1, cluster 3, and cluster 4.

Functional enrichment analysis. We tested for gene overrepresentation of  all target lists (e.g., from DEGs 
and WGCNA networks) within a panel of  annotated gene databases (Gene Ontology [GO; http://amp.
pharm.mssm.edu/Enrichr/geneSetLibrary?mode=text&libraryName=GO_Biological_Process_2017] 
Biological Process [BP], GO Molecular Function [MF; http://amp.pharm.mssm.edu/Enrichr/gene-
SetLibrary?mode=text&libraryName=GO_Molecular_Function_2017], GO Cellular Component [CC; 
http://amp.pharm.mssm.edu/Enrichr/geneSetLibrary?mode=text&libraryName=GO_Cellular_Com-
ponent_2017], Kyoto Encyclopedia of  Genes and Genomes [KEGG; http://amp.pharm.mssm.edu/
Enrichr/geneSetLibrary?mode=text&libraryName=KEGG_2016], Reactome [http://amp.pharm.mssm.
edu/Enrichr/geneSetLibrary?mode=text&libraryName=Reactome_2016]) using hypergeometric tests 
implemented with Enrichr (64), as automated using the python script, EnrichrAPI (https://github.com/
russellstewart/enrichrAPI/tree/08e4733a0e07ac6c57c46a918547439867f8ba44; commit ID, 08e4733a0e-
07ac6c57c46a918547439867f8ba44). We report only terms and pathways that were enriched with FDR < 
0.05. Box plots comparing expression of  enriched pathways across clusters show mean expression for genes 
in the target list that are also annotated for the pathway being plotted.

WGCNA. We carried out WGCNA using samples from a previous bulk RNA-seq experiment on 
flow-sorted resident and recruited AMs that was similar in design to the current study (14). We first down-
loaded the raw count table from GEO and then filtered samples such that only RAMs from days 0, 3, and 
6 and RecAMs from days 3 and 6 were retained (3 replicates per treatment = 15 samples total). Genes 
without counts >1 in at least 1 sample were removed, leaving 19,857 genes to analyze. We normalized the 
counts using DESeq2’s implementation of  variance stabilizing transformation (VST), which accounts for 
heterogeneity in sequencing coverage across cells, while also minimizing mean-dependent variance (65).

We then analyzed the VST-normalized counts using the WGCNA R package (66) in order to infer 
distinct networks (or modules) of  coexpressed genes that may share common biological functions or be reg-
ulated by the same upstream mechanisms (67). Briefly, the WGCNA method measures pairwise Pearson 
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correlations among all expressed genes in the dataset, constructs a gene network based on these correla-
tions, calculates topological overlap among genes in the network, and then, by carrying out hierarchical 
clustering of  a distance metric based on the topological overlap matrix, identifies discrete clusters of  genes. 
We set the soft-thresholding power to 3, which best maximized the number of  connections in the gene net-
work, while still meeting the scale-free network assumptions of  the method, and we retained the direction 
of  correlations among indirect connections in the network (i.e., analysis was signed). In addition, mini-
mum network size was set to 30, maxCoreScatter was set to 0.84, minGap was set to 0.15, and cutHeight 
was set to 0.78 (the 90% quantile of  the tree height). We then merged any networks whose eigengenes were 
highly correlated (>0.85).

When determining whether gene expression was significantly different in 1 group compared with 
another, we used the Wilcoxon rank sum test. Genes were considered differentially expressed when P 
values (controlled for multiple comparisons using the Benjamini–Hochberg FDR procedure) were <0.05. 
Similarly, for determining significance in pathway analysis, pathways were only deemed significant if  the 
hypergeometric test FDR was <0.05 and there were at least 3 overlapping genes. For comparisons of  mean 
expression between groups, we used 1-sided t tests, with P < 0.05 considered significant.
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