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Introduction
Sepsis is the leading cause of  death among critically ill patients in the US, with between 270,000 and 
370,000 people dying from the disease annually (1). Outside of  antibiotics, treatment of  sepsis is nonspecif-
ic, aimed at early cardiopulmonary resuscitation to minimize the adverse systemic effects of  infection (2). 
Although this approach is frequently effective (3), there are no approved therapeutics available for sepsis 
once antibiotics and supportive therapy fail (4). As the third most common cause of  death in the US follow-
ing heart disease and cancer (5–8), sepsis represents a prevalent and deadly public health issue.

T cells play a crucial role in host immune response during sepsis (4, 9, 10). Moreover, it is well 
known that a significant T cell loss occurs during sepsis both in animal and in human studies (9–14). 
We recently showed that sepsis results in the preferential attrition of  memory phenotype CD8+ T cells 
relative to naive CD8+ T cells via apoptosis (15), suggesting that the frequency of  CD8+ memory T cells 
in a given individual before the onset of  sepsis could be an important factor in sepsis pathogenesis. In 
normal adult human subjects, the peripheral T cell compartment consists of  about 30%–70% memory 
T cells. In contrast, laboratory mice housed under specific pathogen–free conditions possess only about 
10%–20% memory T cells (16, 17). A recent seminal study by Beura and colleagues showed that expo-
sure of  laboratory animals to pet store or feral mice resulted in the rapid generation of  CD8+ memory 
T cell populations in these animals, at levels that approximate those observed in adult humans (18). 
Thus, to better model the antigen-experienced immune system of  human patients, in this study we have 
developed a model to generate mice that possess a memory T cell compartment more similar to that of  
adult humans, to study the T cell response to sepsis in the more physiologically relevant context of  high 
frequencies of  CD8+ memory T cells.

The ultimate outcome of  T cell activation is determined by the balance of  costimulatory and coin-
hibitory molecule signals received during T cell priming or recall (19). In addition to naive precursors, 
memory T cells are potently regulated by ligation of  coinhibitory receptors on their cell surfaces (20–22). 

Recent seminal studies have revealed that laboratory mice differ from adult humans with regard 
to the frequency, number, and distribution of memory T cells. Because our data show that 
memory T cells are more susceptible to sepsis-induced death than naive T cells, in this study 
we developed a model in which mice possess a memory T cell compartment more similar to that 
of adult humans, to better study immune responses during sepsis in the more physiologically 
relevant context of high frequencies of memory T cells. Using this model, we found that CD44hi 
memory T cells significantly upregulated the coinhibitory molecule 2B4 during sepsis, and 2B4+ 
memory T cells coexpressed markers of both activation and exhaustion. Genetic deficiency in 
2B4 resulted in decreased mortality during sepsis. Mechanistically, this decreased mortality was 
associated with reduced caspase-3/7+ apoptotic T cells in 2B4–/– relative to WT, septic hosts. 
These results were corroborated by analysis of PBMCs isolated from human patients with sepsis, 
which showed increased frequencies of caspase-3/7+ apoptotic cells among 2B4+ relative to 2B4– 
T cells. Thus, 2B4 plays a critical role in sepsis-induced apoptosis in both murine memory T cells 
and those isolated from human patients with sepsis.
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Furthermore, numerous studies have demonstrated that coinhibitory signals play a critical role in regulat-
ing T cell responses during sepsis (23–28). For example, increased expression of  coinhibitory molecules, 
including programmed cell death 1 (PD-1) and B and T lymphocyte attenuator, has been identified on the 
surface of  T cells isolated from patients with sepsis as opposed to those obtained from controls without 
sepsis (14), and blockade of  these pathways may represent a therapeutic strategy for the amelioration of  
morbidity and mortality in individuals with sepsis (24, 26, 27, 29–34). In particular, many published stud-
ies demonstrate that anti–PD-1 and anti–programmed cell death ligand 1 (anti–PD-L1) improve survival 
in murine models of  sepsis (25, 26, 32, 35–41), and a clinical trial of  anti–PD-L1 in sepsis has been con-
ducted (https://clinicaltrials.gov NCT02576457). In addition, we recently found that 2B4 signals are sig-
nificantly associated with the outcome of  sepsis pathogenesis (42). 2B4-knockout mice had a significantly 
better survival rate after cecal ligation and puncture (CLP) compared with WT mice. However, the role of  
these coinhibitory molecules on memory CD8+ T cell responses during sepsis is not well understood. In 
this study, we used a potentially novel “memory mouse” model to interrogate the role of  the 2B4 coinhib-
itory pathway in sepsis pathogenesis in antigen-experienced hosts, and this model may better recapitulate 
the mature immune systems of  adult patients with sepsis.

Results
Generation of  “memory mice” for use in studies of  sepsis pathogenesis. Naive B6 animals were first infected with a 
Listeria monocytogenes bacterial infection followed by an lymphocytic choriomeningitis virus (LCMV) viral 
infection as described in Methods to generate an effector T cell response that would resolve and generate 
memory T cells (Figure 1A). We assessed the magnitude and kinetics of  the CD4+ and CD8+ T cell responses 
during the expansion and contraction of  the immune response following these infections. The frequency of  
CD44hi cells among both CD4+ and CD8+ T cell populations significantly increased on day 10 after Listeria 
infection and then significantly decreased by day 25 after Listeria infection (Figure 1, B–D). Mice were then 
infected with LCMV, and 10 days later the frequency of  CD44hi cells among both CD4+ and CD8+ T cell 
populations significantly increased again (day 40, Figure 1, B–D) and then decreased on day 55 after Listeria 
infection (day 25 after LCMV infection). In sum, results indicate that our model resulted in the generation 
of  animals that possess a significantly increased frequency of  CD44hi memory T cells in both the CD4+ and 
CD8+ T cell compartments (CD4: 38.4% ± 1.3% versus 20.1% ± 1.5%, P < 0.0001; CD8: 54.6% ± 1.5% 
versus 18.1% ± 1.4%, P < 0.0001) (Figure 1, E and F). As shown in Supplemental Figure 1 (supplemental 
material available online with this article; https://doi.org/10.1172/jci.insight.126030DS1), the increase in 
memory T cells shown in Figure 1, E and F, was due almost entirely to an increase in CD44hiCD62Llo effector 
memory cells (Tem) in both the CD4+ and CD8+ T cell compartments.

“Memory mice” exhibit significantly increased T cell loss during sepsis compared with naive hosts. Memory mice, 
as well as age- and housing-matched naive controls, were then subjected to CLP. Animals were sacrificed at 
24 hours after CLP to assess the impact of  sepsis on the magnitude of  the T cell compartment. We found 
that antigen-experienced memory mice exhibited a statistically significant increase in loss of  CD8+ (but not 
CD4+) T cells following sepsis compared with naive septic animals (2.68 × 106 ± 1.85 × 105 versus 5.28 × 
106 ± 3.01 × 105, P < 0.0001) (Figure 2, A and B). Based on the results that CLP led to a greater loss of  
CD8+ T cells in memory mice compared with naive septic control animals, we hypothesized that memory 
mice would exhibit increased mortality during sepsis. However, analysis of  7-day survival revealed no sta-
tistically significant difference between naive and memory mice after CLP (Figure 2C).

Given the findings that memory mice exhibited increased attrition of  CD8+ T cell populations 
relative to naive controls following sepsis, we next sought to determine whether sepsis has a differen-
tial effect on naive (CD44lo) versus memory (CD44hi) T cell populations. Memory mice, generated as 
described above, were subjected to CLP or sham operation and splenocytes were harvested 24 hours 
after surgery. Results indicated that compared with the sham operation, both CD44hiCD4+ (2.81 × 106 
± 7.07 × 105 versus 5.17 × 106 ± 7.88 × 105, P = 0.038) and CD44loCD4+ (5.56 × 106 ± 5.60 × 105 versus 
7.00 × 106 ± 6.64 × 105, P = 0.011) T cells were significantly reduced following sepsis (Figure 2, D and 
E), indicating that sepsis-induced T cell attrition affects both naive and memory CD4+ T cells. In con-
trast, for CD8+ T cells, only the CD44hi population was significantly reduced following CLP (2.57 × 
106 ± 6.68 × 105 versus 5.23 × 106 ± 6.37 × 105, P = 0.010) (Figure 2, F and G), while the CD44loCD8+ 
T cell population was preserved. These data indicate that sepsis-induced T cell attrition preferentially 
affects memory CD8+ T cell populations compared with naive CD8+ T cell populations.

https://doi.org/10.1172/jci.insight.126030
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2B4 coinhibitory receptor is preferentially upregulated on CD44hi memory T cells during sepsis. Because we 
found that CD44hiCD8+ T cells were preferentially lost relative to CD44loCD8+ T cells during sepsis, 
we queried the mechanism underlying increased CD8+ memory T cell sensitivity to cell loss during 
sepsis. Because we previously found that 2B4 expression was significantly upregulated on total CD4+ 
and CD8+ T cell populations following sepsis, we posited that it may play a crucial role in CD8+ mem-
ory T cell loss in these memory mice. To test this, we first assessed expression of  the 2B4 coinhibitory 
receptor on naive CD44lo and memory CD44hiCD4+ and CD44hiCD8+ T cells in memory mice at 24 
hours after CLP. The results showed that the frequency of  2B4-expressing T cells increased in both the 
CD44hiCD4+ (Figure 3, A and B) and CD44hiCD8+ (Figure 3, C and D) subsets following sepsis but not 
in the CD44loCD4+ and CD44loCD8+ subsets.

To understand the impact of  2B4 expression on memory T cells during sepsis, we evaluated differences 
in T cell activation between 2B4hiCD44hi and 2B4loCD44hi memory T cells in both the CD4+ and CD8+ T 
cell compartments. Compared with 2B4–CD4+ T cells, CD25 and PD-1 were significantly upregulated on 
2B4+CD4+ T cells (CD25: 20.13% ± 1.11% versus 14.33% ± 0.42%, P = 0.0001; PD-1: 92.44% ± 1.12% 
versus 68.16% ± 1.84%, P < 0.0001). There was no difference in expression of  CD69 between 2B4+CD4+ 
and 2B4–CD4+ T cells (Figure 3, E and F). In contrast, expression of  CD25, CD69, and PD-1 were all sig-
nificantly higher on 2B4+CD8+ T cells relative to 2B4–CD8+ T cells (CD25: 13.94% ± 2.17% versus 3.72% 
± 0.43%, P = 0.0002; CD69: 15.37% ± 1.48% versus 11.53% ± 1.07%, P = 0.0495; PD-1: 82.60% ± 1.41% 
versus 47.33% ± 2.41%, P < 0.0001) (Figure 3, G and H).

2B4 deficiency rescues memory mice from sepsis mortality. Because we found that 2B4+ memory T cells 
exhibited markers of  both increased activation (CD25, CD69) and exhaustion (PD-1) compared with 2B4– 
T cells during sepsis, we queried the functional impact of  2B4 signaling during sepsis in memory mice by 
interrogating overall mortality in WT versus 2B4–/– memory mice following CLP. WT and 2B4–/– memory 
mice were generated using the method described above. We observed no difference in the frequency of  
CD4+ or CD8+ memory T cells generated following Listeria and LCMV infections in 2B4–/– compared with 
WT animals before sepsis induction (data not shown). Animals were then subjected to CLP. Importantly, 
results demonstrated a significant improvement in the 7-day survival of  2B4–/– memory mice compared 
with WT memory mice (Figure 4A).

To interrogate the cellular changes associated with improved mortality in the 2B4–/– memory mice, 
we assessed the magnitude of  the CD4+ and CD8+ T cell compartments in 2B4–/– and WT memory mice 
following CLP. Results indicated that the absolute numbers of  CD44hiCD4+ T cells were significantly 
higher in 2B4–/– memory mice with sepsis compared with WT memory mice with sepsis (5.71 × 106 ± 1.04 
× 106 in 2B4–/– versus 2.81 × 106 ± 7.07 × 105 in WT, P = 0.030) (Figure 4, B and C). Absolute numbers 
of  CD44hiCD8+ T cells in 2B4–/– memory mice with sepsis compared with WT memory mice with sepsis 
were not significantly different but showed a trend toward being increased (Figure 4, D and E).

To determine whether a difference in induction of  apoptosis might underlie these alterations in cell 
numbers and mortality in 2B4–/– mice during sepsis, the frequency of  cells expressing active caspase-3/7 
and staining positively with SYTOX, a viability dye, was assessed. Results indicated that while the fre-
quency of  caspase-3/7+SYTOX+CD4+ T cells was not significantly different between WT and 2B4–/– mice 
following CLP (Figure 4, F and H), 2B4–/–CD8+ T cells contained significantly fewer caspase-3/7+SYTOX+ 
cells compared with WT CD8+ T cells following CLP (Figure 4, G and I).

Human 2B4+ T cells exhibit increased frequencies of  active caspase-3/7+ cells compared with 2B4– T cells during 
sepsis. Given these data suggesting that 2B4 expression can promote mortality and immune dysregulation in 
antigen-experienced mice following sepsis, we next sought to understand the association of  2B4 expression 
with T cell death in human septic patients. To approach this, we collected PBMCs under an IRB-approved 
protocol from n = 10 healthy donors (HDs) or n = 14 patients who were hospitalized in the intensive care 
unit (ICU) and had received a diagnosis of  sepsis within 24 hours. Patient demographic and clinical data 
are summarized in Supplemental Table 1. Results indicated that total frequencies of  CD4+ and CD8+ naive 
T cells, central memory T cells, Tem, and terminal-differentiated effector memory cells (Temra) were not dif-
ferent between patients with sepsis versus HDs (Figure 5A). Moreover, frequencies of  cells expressing active 
caspase-3/7, an indicator of  apoptotic cell death, were not increased in memory T cell subsets compared 
with naive T cells in either the CD4+ or CD8+ T cell compartment of  patients with sepsis (Figure 5B), indi-
cating that in these patients, memory T cell status alone was insufficient to confer an increased frequency of  
apoptotic cells following sepsis. However, analysis of  the 2B4+ subset within the CD8+ T cell compartment 

https://doi.org/10.1172/jci.insight.126030
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revealed an increased frequency of  caspase-3/7+ apoptotic cells compared with the 2B4–CD8+ T cell subset 
(Figure 5C). In sum, these data suggest that 2B4 expression on CD8+ T cells is also associated with increased 
cell apoptosis in human patients with sepsis.

Discussion
The data presented here show that memory CD8+ T cells are more susceptible than naive CD8+ T cells to 
sepsis-induced attrition, highlighting the important concept that memory T cells may behave differently than 
naive T cell populations during sepsis-induced immune dysregulation. Because the T cell compartments of  

Figure 1. Generation and characterization of polyclonal memory T cells following infection. Naive B6 mice were infected 
with Listeria and allowed to develop a population of memory T cells. Mice were infected with LCMV 30 days later. Estab-
lishment of memory was assessed by flow cytometry 25 days after LCMV infection. (A) Schematic of experimental design. 
(B and C) Representative flow plots depicting CD44 expression on splenic CD4+ T cells following infection. (D) Expansion 
of CD44+ T cells in the spleen over time following antigenic challenge (n = 20/group). (E and F) Summary of frequency of 
CD44hi cells among CD4+ and CD8+ T cell compartments in memory mice on day 55 following infection (per schematic in 
A) in the blood, compared with the frequency of CD44hi cells in the blood of naive uninfected animals. Groups (n = 5) were 
compared with the Mann-Whitney nonparametric test. ****P < 0.0001. All data expressed as mean ± SEM.
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adult humans contain greater than 50% memory T cells (16, 17) while laboratory mice possess relatively few 
memory T cells, these data support the concept that analyzing the behavior of  antigen-experienced immune 
systems during sepsis might yield novel insights closely mirroring the pathophysiology of  human sepsis. 
This is potentially critically important for the field of  sepsis, where numerous targets and therapeutics that 
looked promising in initial preclinical rodent models have failed when tested in human patients with sepsis. 
Some have posited that this indicates that murine hosts are a poor model for studying human sepsis (43). Our 
study instead suggests that generating mouse models that more closely recapitulate the antigen-experienced 
human immune system might help bridge this divide.

Numerous studies have shown that sepsis induces a significant increase in T cell apoptosis (9–13), 
including both antigen-dependent and -independent memory CD8+ T cells (15, 44). In our study, we 
identified a significant loss of  T cells during sepsis in memory mice. Both CD44hiCD4+ and CD44loCD4+ 
T cells were reduced after CLP. However, only CD44hiCD8+ but not CD44loCD8+ T cells were decreased 
following sepsis, which was in line with a previous study in naive mice (15). It is also interesting to 
note that we observed a modest but statistically significant reduction in the number of  T cells between 
the naive versus memory sham-operated mice, particularly within the CD8+ T cell compartment (Figure 
2A). Because we know that memory T cells are more susceptible to sepsis-induced apoptosis (Figure 
2G), we posit that the data shown in Figure 2A suggest that sterile inflammation induced by sham 
surgery could induce a weaker version of  the same phenomenon (i.e., memory T cell apoptosis).  

Figure 2. “Memory mice” exhibit significantly increased T cell loss during sepsis compared with naive hosts. (A and B) Summary quantification of total 
number of CD4+ and CD8+ T cells in the spleen following sham or CLP surgery in either naive mice or memory mice generated as described in Figure 1. Groups 
(n = 10) were compared using a nonparametric, 2-way ANOVA. (C) Kaplan-Meier survival analysis of mortality in animals that had sepsis induced via CLP in 
either the presence or absence of memory T cells. (D) Representative flow cytograms indicating CD44 expression on CD4+ T cells after sham or CLP surgery. 
(E) Summary of total CD44hiCD4+ and CD44loCD4+ T cells, respectively, after sham or CLP surgery. (F) Representative flow cytograms indicating CD44 expres-
sion on CD8+ T cells after sham or CLP surgery. (G) Summary of total CD44hiCD4+ and CD44loCD8+ T cells, respectively, after sham or CLP surgery. In E and G, 
groups (n = 10) were compared with the Mann-Whitney nonparametric test. *P < 0.05, **P < 0.01, and ****P < 0.0001.
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Figure 3. 2B4 coinhibitory recep-
tor is preferentially upregulated 
on CD44hi memory T cells during 
sepsis. Naive B6 mice were 
infected with Listeria. Mice were 
infected with LCMV 30 days later. 
CLP was performed 25 days after 
LCMV infection, and expression 
of 2B4 on CD44lo and CD44hi CD4+ 
and CD8+ T cells in the spleen was 
assessed via flow cytometry. (A) 
Frequency of 2B4 expression on 
total CD4+ T cells. (B) Summary 
data depicting frequency of 2B4 
expression on CD44loCD4+ and 
CD44hiCD4+ T cells. (C) Frequency 
of 2B4 expression on total CD8+ T 
cells. (D) Summary data depicting 
frequency of 2B4 expression on 
CD44lo and CD44hi CD8+ T cells. (E) 
Representative plots depicting 
frequency of CD25, CD69, and PD-1 
within 2B4+CD4+ and 2B4–CD4+ T 
cell compartments. (F) Summary 
of data presented in E. Percent-
ages of CD25+, CD69+, and PD-1+ of 
2B4– cells were calculated by divid-
ing Q1 in the plot shown by Q4. 
Percentages of CD25+, CD69+, and 
PD-1+ of 2B4+ cells were calculated 
by dividing Q2 in the plot shown 
by Q3. (G) Representative plots 
depicting frequency of CD25, CD69, 
and PD-1 within 2B4+CD4+ and 
2B4–CD8+ T cell compartments. (H) 
Summary of data presented in G. 
Percentages of CD25+, CD69+, and 
PD-1+ of 2B4– cells were calculated 
by dividing Q1 in the plot shown by 
Q4. Percentages of CD25+, CD69+, 
and PD-1+ of 2B4+ cells were cal-
culated by dividing Q2 in the plot 
shown by Q3. Groups (n = 10) were 
compared with the Mann-Whitney 
nonparametric test. *P < 0.05, 
***P < 0.001, and ****P < 0.0001. 
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This interesting idea warrants further investigation. How-
ever, despite this significant impact of  memory status on 
CD8+ T cell attrition during sepsis, we did not observe a 
significant increase in mortality in memory mice using this 
model. It is possible that this is due to a limited breadth of  
memory T cells before sepsis in this model because only 2 
infections were used to generate the CD44hi memory T cell 
compartment. Although several studies have demonstrat-
ed that memory T cells are cross-reactive and can respond 
not only to the priming antigen but also to a spectrum of  
related antigens (45–47), this memory T cell compartment 
may be narrower in its specificity compared with that of  
humans. Thus, this limited repertoire of  the memory T 
cells generated here is a potentially important limitation of  
the model. Alternatively, there may be a “threshold effect” 
with regard to the impact of  T cell apoptosis on mortality 
during sepsis: Although we observed an increase in T cell 
apoptosis in the memory mice, it may not have been a large 
enough effect to influence overall mortality. Nevertheless, 
our results indicate that rescuing the loss of  memory T cell 
number and functionality (in this case via deletion of  2B4) 
may be beneficial for increasing sepsis survival.

Indeed, in addition to our group, 3 other groups are 
currently studying the impact of  antigen experience or 
infectious history on sepsis physiology. The Lederer and 
Badovinac/Griffiths labs have used pet store–derived “dirty 
mice” to generate T cell memory before sepsis induction (48, 
49). Griffiths and Badovinac showed that B6 mice that had 
been cohoused with pet store mice exhibited significantly 
worsened survival following sepsis (49), and Deutschman’s 
group showed that animals exposed to anti-CD3–mediated 
T cell activation and memory T cell generation demonstrat-
ed increased immune dysregulation following sepsis induc-
tion 30 days later (50). Each model has its own distinct 
advantages, in particular the fact that working with natu-
rally colonized “dirty mice” may represent the most physi-
ologically relevant way to generate T cell memory. Results 
from our model will synergize with data obtained from 
these related studies, in that in our system we can be cer-
tain that the observed effects are the result of  immunologic 
memory and not the result of  persistent, chronic infection 
in the “dirty mouse” models, as might occur following the 
transmission of  murine cytomegalovirus, γ-herpesvirus 68 

Figure 4. 2B4 deficiency rescues memory mice from sepsis 
mortality. (A) Kaplan-Meier survival curve comparing mortality 
of WT memory (n = 15) and 2B4–/– memory mice (n = 15) after CLP. 
P < 0.0001. (B–E) Analysis of absolute numbers of CD44hiCD4+ (B 
and C) and CD44hiCD8+ (D and E) T cells obtained from the spleens 
of WT versus 2B4–/– T cells at 24 hours after CLP. (F–I) Analysis of 
caspase-3/7+ and SYTOX+ cells among CD4+ and CD8+ T cell subsets 
obtained from the spleens of WT and 2B4–/– animals at 24 hours 
after CLP. Groups (n = 4–5/group, representative of 2 independent 
experiments with a total of n = 10/group) were compared with the 
Mann-Whitney nonparametric test. *P < 0.05. 
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(an Epstein-Barr virus homolog), or murine polyomavirus (a persistent viral infection endemic to almost 
all wild rodents and humans). Overall, these studies have together illuminated the fact that the actions of  
memory lymphocytes significantly influence immune dysregulation during sepsis and that a significant 
knowledge gap exists in understanding the molecular pathways that mediate this effect.

In a previous study, we reported that 2B4 signals play a crucial role in mediating T cell dysregulation 
and mortality during sepsis in naive animals (42). Here, using a memory model to better approximate 
the antigen-experienced immune systems of  adult humans, we also found that 2B4–/– memory mice 
exhibited a significantly higher survival rate following sepsis compared with WT memory CLP controls. 

Figure 5. 2B4+CD8+ T cells in patients with sepsis exhibited increased cell apoptosis. PBMCs were isolated from n = 
14 patients with sepsis under an IRB-approved protocol within 24 hours of a sepsis diagnosis and from n = 10 normal 
healthy controls. (A) Frequencies of memory T cell subsets in n = 10 HDs versus n = 7 patients with sepsis. Naive T 
cells (Tnaive) were identified by gating on CD45RA+CCR7+; central memory T cells (Tcm) were gated on CD45RA–CCR7+; Tem 
were gated on CD45RA–CCR7–; and Temra were gated on CD45RA+CCR7–. Cells from septic patients 1–7 as identified in 
Supplemental Table 1 were used in A. The box plots depict the minimum and maximum values (whiskers), the upper 
and lower quartiles, and the median. The length of the box represents the interquartile range. (B) Active caspase 3/7 
staining on CD4+ and CD8+ T cell subsets isolated from n = 7 patients with sepsis was determined by flow cytometry. 
Summary data of frequencies of active caspase-3/7+ T cells within memory T cell subsets of CD4+ T cells (left) and 
CD8+ T cells (right) are displayed. (C) CD8+ T cells were further divided into 2B4– and 2B4+ populations and caspase-3/7 
activity was assessed. Representative flow plots for caspase-3/7 staining in CD8+2B4– and CD8+2B4+ T cells. Summary 
data of frequencies of caspase-3/7+ cells within 2B4–CD8+ and 2B4+CD8+ T cells. Cells from septic patients 8–14 as 
identified in Supplemental Table 1 were used in B and C. *P < 0.05. SSC, side scatter. 
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Although our study focused on the role of  2B4 on T cells, it is worth noting that 2B4 is also highly 
expressed on NK cells. Although we have previously determined that 2B4 deficiency on NK cells did not 
contribute to the overall survival benefit observed in 2B4–/– mice, “memory” NK cells have been shown 
to be generated following exposure to IL-12 or IL-18 (in the presence or absence of  IL-15) (51). As such, 
future research should determine whether cytokine-driven memory NK cells are generated in this model 
and whether 2B4 deficiency plays a differential role on those memory NK cells relative to the negligible 
role we found it to play on “naive” NK cells during sepsis.

Our previous report on naive animals indicated that 2B4 coinhibitory signaling on CD4+ T cells func-
tioned in a cell-intrinsic manner to mediate immune dysfunction and mortality during sepsis (42). In the 
current study, we found that loss of  2B4 reversed attrition of  CD4+CD44hi T cell populations. 2B4 deficien-
cy was associated with a decrease in active caspase-3/7+SYTOX+CD4+ T cells. Moreover, studies of  cells 
isolated from human patients with sepsis indicated that the frequency of  caspase-3/7+ cells was higher in 
2B4+CD8+ T cells during sepsis relative to 2B4–CD8+ T cells. Taken together, these complementary mouse 
and human data strongly suggest that expression of  2B4 promotes memory CD4+ T cell apoptosis during 
sepsis and raise the possibility that blockade of  this signal could limit this deleterious effect and promote 
immune competence. To understand why the loss of  2B4 coinhibitory signaling can prevent memory T 
cell attrition during sepsis, we assessed the phenotype of  2B4+ versus 2B4– memory T cells during sep-
sis and found that the 2B4+CD44hi subset contained a higher frequency of  activated CD25+CD69+ cells 
within both the CD4+ and CD8+ compartments compared with the 2B4–CD44hi subsets during sepsis. In 
sum, our results indicate that targeting 2B4 coinhibitory signaling may be a potential immunomodulatory 
therapy to improve outcomes in antigen-experienced human patients with sepsis.

Methods
Mice. We purchased 6-week-old male B6 mice from The Jackson Laboratory. 2B4-knockout mice on a B6 
background, a gift of  C. Terhorst (Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 
Massachusetts, USA), were bred and maintained in an approved animal facility at Emory University. We 
used age-matched 2B4–/– mice as B6 mice. All mice were maintained according to the Emory University 
Institutional Animal Care and Use Committee guidelines (protocol number 2003238-082518).

Generation of  “memory mice.” Both WT and 2B4–/– mice were infected with 1 × 104 CFU of  Listeria 
monocytogenes in 500 μl PBS intraperitoneally. On days 10 and 25 after infection, we assessed the frequency 
of  CD44hiCD4+ and CD44hiCD8+ T cells. Mice were infected with 2 × 105 PFU LCMV intraperitoneally 30 
days after infection, and the frequency of  CD44hi memory CD4+ and CD44hi memory CD8+ T cells were 
assessed on days 40 and 55 following the first infection. Both of  these infections are acutely cleared, allow-
ing us to assess the impact of  T cell memory in the absence of  active infection. Two months after Listeria 
infection, groups of  mice underwent CLP or sham surgery as indicated.

Sepsis model. Animals were subjected to the CLP model of  septic peritonitis on day 60 following the first 
infection. Mice were anesthetized via inhaled isoflurane, and a midline abdominal incision was made. The 
cecum was exteriorized, ligated, and punctured twice with a 25-gauge needle. The bowel was then returned 
to the abdominal cavity, and the incision was closed. All mice received buprenorphine (0.1 mg/kg) to relieve 
pain before the CLP procedure. Mice undergoing sham surgery received only the operation without ligation 
and puncture. Mice received a 1-ml subcutaneous injection of  sterile saline immediately after surgery, as well 
as antibiotics (50 mg/kg of  ceftriaxone and 35 mg/kg metronidazole) designed to mimic the early bundle 
treatment of  patients with sepsis. Antibiotics were injected subcutaneously at 12, 24, and 36 hours after sur-
gery. Mice were euthanized using CO2 asphyxiation at designated time points.

Flow cytometry. Spleens were harvested after mice were sacrificed at 24 hours after CLP, and then spleens 
were processed to single-cell suspensions in a 70-μm filter placed over a 50-ml conical tube. Samples were rinsed 
with 10 ml cold PBS, and 200 μl from each spleen was aliquoted in a 96-well plate for staining. Alexa Fluor 700 
anti-CD3 (BD Biosciences), anti-CD4-PB (BD Biosciences), anti-CD8-PO (Biolegend), and anti-CD44-PerCP 
(Biolegend) were used to stain to distinguish the naive and memory CD4+ and CD8+ T cells. Anti-CD25-FITC 
(Biolegend), anti-CD69-PE (Biolegend), anti-CD62L-PE Cy7 (BD Biosciences), anti-2B4-APC, anti-PD-1-APC-
Cy7, anti-LAG-3-FITC (all from eBioscience) were used for surface staining to determine the T cell phenotype. 
Anti–active caspase-3/7 and SYTOX were used per manufacturer’s instructions to detect apoptotic cells. Accu-
check Counting Beads (Thermo Fisher Scientific) were added during staining to calculate the absolute number 
of T cells per spleen. Human PBMCs were stained with anti-CCR7, anti-CD45RA, anti-CD4, anti-CD8, and 
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anti–caspase-3/7 (Invitrogen). All the samples were run on an LSR II flow cytometer (BD Biosciences). FlowJo 
software (Tree Star Inc.) was used to analyze the data.

Human patients. Blood was collected from patients with sepsis within the first 24 hours of  meeting the 
consensus clinical definition of  sepsis. Average age of  the cohort with sepsis analyzed here was 49.4 ± 
18.2 years and was not significantly different from the average age of  the HDs. Similarly, the sex distri-
butions within the sepsis versus HD cohorts were not different. In terms of  severity of  sepsis, the mean 
sequential organ failure assessment score was 7.6 ± 2.3, and the mean acute physiology, age, and chronic 
health evaluation score was 21.1 ± 10.4. The mean length of  hospital stay for this cohort was 23.7 ± 16.4 
days, and mean length of  ICU stay was 9.1 ± 7.5 days. Additional demographic and clinical data are 
summarized in Supplemental Table 1. Values listed above represent the mean ± SD.

Statistics. Statistical analyses were conducted using GraphPad Prism 6.0 software. Survival studies were 
analyzed using the log-rank test. Other variables were compared between the groups using 2-way ANOVA 
or the Mann-Whitney nonparametric test. All the data were expressed as mean ± SEM. A P value of  less 
than 0.05 was considered statistically significant.

Study approval. Animal experiments were approved by the Emory University Institutional Animal Care 
and Use Committee, under protocol number 2003238-082518. Approval for procurement of  HD and septic 
patient PBMCs was provided by the Emory University IRB, under protocol number 00002503. Informed 
consent was received from all human subjects.
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