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Introduction
Inflammatory arthritis affects approximately 1% to 2% of  the population (1). Although dwarfed numeri-
cally by osteoarthritis, its collective impact remains substantial because of  the potential for severe disability 
and because patients are often young. The most common adult form of  inflammatory arthritis, rheumatoid 
arthritis (RA), can begin in teenagers, whereas juvenile idiopathic arthritis (JIA) peaks before the age of  6 
years. This family of  diseases therefore disproportionately threatens a period of  life typically characterized 
by good health, leading to impaired quality of  life as well as loss of  productivity and medical expenses.

Inflammatory arthritis is not a single disease. Broadly, inflammatory arthritis may be divided into 
conditions focused on the synovium and those that also affect the entheses, the insertion zones of  ten-
dons, ligaments, and joint capsules into bone. This division is far from absolute but usefully reflects a 
clinical and pathophysiologic spectrum that ranges from RA, characterized by an aggressive synovitis 
affecting peripheral joints, to ankylosing spondylitis, characterized by enthesitis and new bone forma-
tion in the axial skeleton. Ankylosing spondylitis, reactive arthritis, and psoriatic arthritis form part 
of  a family of  enthesis-focused diseases termed “spondyloarthritis.” Arthritis beginning in childhood 
was traditionally regarded as a distinct disease family, although it is increasingly clear that most forms 
of  JIA resemble their adult counterparts (2). This Review will focus on synovitis and its genesis and 
perpetuation by antibodies and antibody-independent mechanisms. Mechanisms of  spondyloarthritis 
have been recently reviewed (3).

Autoantibodies in inflammatory arthritis
In common with other autoimmune diseases, many forms of  inflammatory arthritis are associated with 
circulating autoantibodies (Table 1 and refs. 4–10). In 1939, serum from a patient with RA was noted to 
aggregate sheep red blood cells opsonized with rabbit IgG (11). This serologic capacity was subsequently 
found in many but not all RA patients and determined to reflect the presence of  RF, an antibody directed 
against the fragment crystallizable (Fc) region of  IgG (12, 13). Although detectable in other disease states, 
RFs associated with RA exhibit affinity maturation of  the antibody complementarity–determining region, 
potentially implicating a history of  T cell help that is uncommon for RF generated outside of  RA (14–18). 
Clinically, RA accompanied by RF — termed “seropositive RA” and representing 40% to 80% of  all RA 
— is characterized by a tendency toward greater disease severity (19–22). RFs are a heterologous group of  
antibodies, most commonly IgM but also IgG or IgA. Although RF of  all isotypes is associated with more 
aggressive disease and bone erosions, IgA RF is particularly correlated with extra-articular manifestations, 
such as interstitial lung disease, nodule formation, and rheumatoid vasculitis (23–27).

Inflammatory arthritis encompasses a set of common diseases characterized by immune-mediated 
attack on joint tissues. Most but not all affected patients manifest circulating autoantibodies. 
Decades of study in human and animal arthritis have identified key roles for autoantibodies in 
immune complexes and through direct modulation of articular biology. However, joint inflammation 
can arise because of pathogenic T cells and other pathways that are antibody-independent. Here 
we review the evidence for these parallel tracks, in animal models and in humans, to explore the 
range of mechanisms engaged in the pathophysiology of arthritis and to highlight opportunities for 
targeted therapeutic intervention.
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The identification of  RF spurred the search for other RA-associated autoantibodies. One of  the first 
antigen-specific autoantibodies was discovered in 1964, when serum from some RA patients was shown 
to bind in a perinuclear pattern to human epithelial cells cultured from buccal mucosa. This autoantibody 
was named “antiperinuclear factor” (28). Reactivity was subsequently noted against the keratin layer of  rat 
esophagus (29). These antibodies were directed against peptides modified posttranslationally through con-
version of  arginine to citrulline, an enzymatic reaction executed by the peptidyl arginine deiminases (PADs) 
that neutralizes the positive charge of  the arginine side chain (30–32). Such ACPAs are highly specific for 
RA and are present in approximately two-thirds of  patients (33). ACPAs recognize citrullinated fibrinogen, 
vimentin, enolase, and collagen peptides, among other antigens (Table 1). Indeed, ACPAs often recognize 
multiple citrullinated targets because affinity is driven by the citrulline residue itself, modulated only modest-
ly by peptide context (34). For reasons still to be determined, RF+ and ACPA+ patient subsets largely overlap, 
with ACPA reactivity often preceding the appearance of  RF (35). Intriguingly, the citrullination pathway 
is also targeted by other RA autoantibodies, with approximately 20% to 40% of  RA patients manifesting 
antibodies against PAD4 (36–38). These patients may exhibit more joint erosion, while RA patients with 
anti-PAD4/PAD3 antibodies demonstrate more interstitial lung disease (37, 39, 40).

Both RF and ACPAs can be generated within the synovium, as evidenced both by higher levels in the 
synovium and synovial fluid than in paired blood and by the presence of  corresponding plasma cells in 
joint tissue (41–43). Local autoantibody production is likely fostered by a recently identified lymphocyte, 
the T peripheral helper (TPH) cell, which provides help for B cells outside of  lymph nodes (44). ACPAs can 
also be generated in the lung, supporting the possibility that RA can begin as an immune reaction in the 
pulmonary epithelium that extends to affect the joints (45).

Other autoantibodies have been associated with inflammatory arthritis. Approximately 45% of  RA 
patients exhibit antibodies against peptides that have undergone another posttranslational modification, 
carbamylation (5). Antibodies may be formed against proteins modified through acetylation, oxidation, 
or malondialdehyde-acetaldehyde adducts (46–48). IgG isolated from RA joints exhibits reactivity against 
histones (49). ANA is common and in RA is associated with concomitant Sjogren’s syndrome (50). In JIA, 

Table 1. Autoantibodies in RA

Autoantibodies Prevalence Citation
Rheumatoid factor (RF) 41%–80% 20, 21, 46, 48
Anti–citrullinated proteins (ACPAs) 36%–78% 20, 21, 31, 48
     Citrullinated fibrinogen 25% 4
     Citrullinated vimentin 57%–61% 38, 46
     Citrullinated aldolase A 35% 4
     Citrullinated collagen type II 7%–24% 185, 186
     Citrullinated α-enolase 70% 4
     Citrullinated RA33 44% 10
Anti–carbamylated proteins (anti-CarPs) 27%–45% 5, 21, 187
     Carbamylated albumin 31% 188
     Carbamylated fibrinogen 38%–43% 189, 190
     Carbamylated α1-antitrypsin N/AA 191
     Carbamylated vimentin 35% 46
Anti–malondialdehyde-acetaldehyde adducts 88%–93% 6, 48
Anti–peptidyl arginine deiminase 4 (anti-PAD4) 18%–42% 36–38
Anti-RA33 (hnRNP A2/B1) 5%–35% 10, 19
Anti-nuclear antibody (ANA) 34% 50
Anti-histone 15%–75% 4, 7, 8
Anti-DEK 57% 9
Anti–native collagen type II 17%–43% 192, 193
Anti–oxidized collagen type II 45% 47
Anti-GPI 12%–25% 194
Anti–acetylated vimentin 37% 46
AAntibodies detected but percentage prevalence data are not available. This is a partial list and is not intended to be 
comprehensive account of all autoantibodies in RA.
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the presence of  ANA correlates with early disease onset and risk for chronic anterior uveitis, especially 
when anti-histone antibodies are also present (7, 8, 51, 52). Oligoarticular JIA with uveitis has also been 
associated with antibodies against the chemoattractant nuclear protein DEK (9).

The pathogenic relevance of  antibodies is amply confirmed in animals. The 2 best-studied experimen-
tal arthritis models, K/BxN arthritis and collagen-induced arthritis (CIA), are both mediated primarily 
through IgG. The K/BxN mouse is a cross (x) between mice bearing the KRN-transgenic T cell receptor 
in a C57BL/6 background (K/B) and the nonobese diabetic (NOD) mouse (N). The KRN receptor recog-
nizes bovine ribonuclease as presented by the class II major histocompatibility complex (MHC) molecule 
Ak. However, in the context of  the NOD MHC II, termed I-Ag7, this receptor instead recognizes a peptide 
from the glycolytic enzyme glucose-6-phosphate isomerase (GPI). Resulting anti-GPI antibodies engen-
der arthritis with clinical and histopathologic similarities to RA, including symmetry, a distal-to-proximal 
gradient of  severity, formation of  erosive pannus, and accumulation of  neutrophils in the joint. In CIA, 
mice immunized with allogenic type II collagen produce antibodies reactive against articular cartilage. In 
both K/BxN and CIA systems, joint disease can be induced in naive wild-type mice via antibody transfer, 
without additional contribution from adaptive immunity (Figure 1 and refs. 53–60). Adoptive transfer of  
ACPAs can further intensify synovitis, supporting a pathogenic role for these autoantibodies (61, 62).

Mechanisms of antibody-mediated arthritis
Arthritis mediated by IgG arises via distinct pathways that can be divided into 2 categories based on the 
role of  ICs (Figure 2). We will review each category in turn, recognizing that individual patients with 
arthritis may proceed simultaneously via both mechanisms as well as through IgG-independent pathways, 
discussed subsequently.

IC-mediated arthritis. ICs are aggregates of  antibodies around a multivalent target and may contain IgG, 
IgM, and sometimes IgA. Antibody clustering engages low-affinity IgG Fc receptors and induces conforma-
tional changes in the Fc region that permit IgG to activate complement, a process termed “complement fix-
ation.” The complement system was originally identified as a soluble component of  serum able to “comple-
ment” antibody-induced lysis of  bacteria and consists of  a set of  proteins with multiple immune functions. 
These proteins are the anaphylatoxins (C3a and C5a) that mediate inflammation, vasodilation, and chemo-
taxis; opsonins (C3b and C4b) that can bind to ICs to facilitate clearance by cells bearing complement recep-
tors; and the membrane attack complex (MAC, C5b–C9) that forms transmembrane pores in target cells to 
induce osmotic lysis. Complement can be activated through 3 pathways. The classical pathway is initiated by 

Figure 1. Intersection of murine arthritis models with the pathogenic sequence of inflammatory arthritis. Inflammation in murine arthritis can arise 
through immune dysfunction arising at a wide variety of levels, ranging from errant T and B cell–driven antigen targeting to overexpression of downstream 
inflammatory mediators. Autoimmunity can translate into arthritis via antibody-dependent pathways, typically through IgG and immune complexes (ICs), 
but also independent of autoantibodies through the action primarily of pathogenic T lymphocytes. Murine models (red-lined gray boxes) illustrating each 
respective mechanism are indicated. CAIA, collagen antibody–induced arthritis; FcR, Fcγ receptor; C′, complement; Cit, citrullinated peptide; OVA, ovalbu-
min; Nɸ, neutrophil; Mɸ, monocyte/macrophage; ILC, innate lymphocyte; mast, mast cell; hTNF-Tg, human TNF–transgenic. Modified from Monach et al. 
(184). Illustrated by Mao Miyamoto.
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the Fc portions of  antigen-bound IgG, IgM, and sometimes IgA through complement proteins C1q/r/s, C4, 
and C2. The alternative pathway relies upon the spontaneous hydrolysis of  complement component C3 into 
C3b, which binds to and cleaves factor B to generate a C3 convertase that is key to completing the comple-
ment cascade and forming the MAC. The lectin pathway is homologous to the classical pathway but is acti-
vated by lectins, carbohydrate-binding proteins that recognize specific glycans, linking to the C3 convertase 
and its downstream effector pathways via mannose-binding lectin-associated serine proteases (MASPs) (63).

Accumulation of  ICs in joints occurs in 3 ways (Figure 2). Circulating ICs may deposit directly 
in joint tissue. Alternately, antibodies against clustered joint-intrinsic antigens may form ICs locally. 
Finally, antibodies may encounter antigen deposited in the joint from the circulation or generated 
within the joint itself, again resulting in local IC formation. ICs are likely a major route to human joint 
inflammation, particularly in seropositive RA, as suggested by the high prevalence of  synovial fluid 
complement fixation, ICs within synovial fluid neutrophils, and ICs in joint explant tissue from this 
RA subset (refs. 64–66 and Table 2).

The capacity of  RF to bind multiple IgG molecules at once can promote IC formation. Self-aggre-
gated RF as well RF bound to IgG activates complement (67–70). Correspondingly, RF is common in 
ICs isolated from RA joints (68, 71–75). RF inhibits the ability of  complement to break up ICs and can 
link smaller complexes together into larger, less soluble ones, potentially accounting for the observations 
that RF is found in most RA patients with vasculitis and depressed serum complement and that synovial 
fluid neutrophils containing ICs are observed primarily in seropositive patients (66, 76–78). RF amplifies 
cell activation by ICs containing ACPAs and citrullinated target peptides, and patients with both RF and 
ACPAs exhibit higher disease activity and circulating proinflammatory mediators than those with either 
autoreactivity alone (20, 22, 79). The nucleating antigen may also play a key role. Citrullinated fibrino-
gen is a common component of  circulating ICs in ACPA-positive RA patients. Although ICs can activate 
macrophages by cross-linking Fcγ receptors, synovial macrophages also bear Toll-like receptor 4 (TLR4), 
an innate immune receptor that recognizes conserved microbial products but also fibrinogen. Therefore, 
ICs containing citrullinated fibrinogen synergistically activate Fcγ receptor and TLR4 pathways to trigger 
an inflammatory response (80). Of  note, transfusion of  RF-containing plasma from patients with RA into 

Figure 2. Antibody-mediated mechanisms of inflammatory arthritis. Joint inflammation mediated by antibodies can proceed via distinct and not mutu-
ally exclusive pathways. ICs formed in circulation can precipitate in joint tissue and trigger enhanced vascular permeability that enables entry of patho-
genic antibodies into the joint. ICs/antibody clusters can form within the joint through binding to joint-intrinsic antigens such as collagen, blood-borne 
antigen deposited on cartilage, or antigens formed de novo in the inflamed milieu such as citrullinated peptides and platelet microparticles, the latter 
generating microparticle-associated immune complexes (mpICs). Independent of IC formation, antibodies can mediate pathology via binding to specific 
targets. For example, antibodies promote citrullination by altering the activation threshold of PADs and stimulate the development or activation of osteo-
clasts. In addition to promotion of bone erosions and local osteopenia, osteoclasts may promote further osteoclastogenesis and contribute to neutrophil 
recruitment via IL-8 and other mediators. Illustrated by Mao Miyamoto.
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nonarthritic human recipients (!) failed to yield joint inflammation (81). Further, RF may appear years 
before the onset of  clinical symptoms, confirming that RF alone is not sufficient to develop RA (35, 82).

IC-mediated arthritis is among the best-understood arthritis pathways because of  the availability of  
tractable animal models. Both CIA and K/BxN arthritis arise via ICs. In CIA, clusters of  IgG form on type 
II collagen in the joint (56–58). In K/BxN arthritis, joint specificity despite the ubiquity of  the autoantigen 
is thought to arise through deposition of  positively charged GPI onto the negatively charged cartilage sur-
face, followed by in situ IC formation, likely with ICs deposited from the circulation (53–55, 83, 84). The 
requirement for ICs is clear from the fact that multiple antibodies recognizing nonoverlapping epitopes are 
generally required (59, 60, 85). Entry of  autoantibodies is facilitated by vascular leakiness of  the synovial 
vasculature induced by the binding of  ICs to circulating neutrophils and platelets as well as perivascular 
mast cells, leading to the release of  vasoactive mediators, such as TNF-α, histamine, and platelet-derived 
serotonin (86–88). Inflammation then proceeds through activation of  cells via low-affinity IC receptors 
(in mouse, receptors FcγRIII and FcγRIV) together with the receptor for anaphylatoxin C5a (19, 89–94). 
Cells implicated in immune sensing include neutrophils, mast cells, and potentially macrophages, with C5a 
serving to sensitize cells to FcγR-mediated activation and to arrest neutrophils on the synovial endothelium 
(95–99). Inflammation is then mediated by infiltrating neutrophils and monocytes together with local cells, 
including fibroblasts and macrophages (86, 100–105).

Despite the key role of  the classical pathway in IC recognition and clearance, classical pathway com-
ponents C1q, C2, and C4 are not required for IgG-mediated arthritis in the mouse. Rather, the alternative 
pathway is dominant, and murine arthritis is markedly attenuated in the absence of  C3 or factor B (89, 
106–108). The mechanistic basis for this observation is incompletely understood. IgG is not canonical-
ly considered to activate the alternative pathway, although in fact such activation has been reported for 
murine IgG, human ACPAs, and human IgA (109–111). Murine studies reveal at least 2 related mecha-
nisms. IgG immobilized on cartilage triggers cleavage of  alternative pathway component factor D via lectin 
pathway MASP-1/3 (MASP-1 and MASP-3 are splice variants of  a single gene and so difficult to distin-
guish genetically) (112, 113). Correspondingly, mice lacking MASP-1/3 are resistant to CIA (114, 115). 
Another lectin pathway protease, MASP-2, activates C3 via the “C4/C2 bypass pathway,” a poorly defined 
pathway whereby C3 is cleaved without requiring C2 and C4, components of  the typical lectin pathway C3 
convertase. Mice deficient in MASP-2 are partially resistant to CIA (116). How pathogenic IgG engages 
MASPs remains to be defined, but deposition of  ICs likely represents a key step. The role of  complement 
in arthritis has recently been comprehensively reviewed (63).

A further line of  evidence for the role of  ICs and complement in arthritis arises from studies of  cartilage. 
Clinical observation shows that arthritis often recurs in RA joints subjected to synovectomy but tends to 
abate in joints from which all cartilage has been resected, even if  synovium remains (117–119). The articu-
lating surface of  cartilage lacks a bilipid membrane, and as a result complement inhibitory proteins such as 
CD59 are absent. Complement fixation is constrained by less efficient chemical mechanisms, such as surface 
sialic acids, and by the maintenance of  very low levels of  complement in normal synovial fluid (64, 120). As 
complement factors enter the joint from the blood in the context of  inflammation-mediated vascular leak, 

Table 2. ICs in RA tissues

Study Tissue Source n RF+ Detection IgG% C3% IC%A Citation
Fish Synovium Bx, Ar 7 57% IF 100 71 71 195
Rodman Synovium Bx 8 75% IF 100 100 100 196
Brandt Synovium Bx, Ar 10 80% IF 80 80 80 197
Bonomo Synovium Bx 10 70% IF 100 100 100 198
Ghose Synovium Bx, Ar 21 62% IF 67 62 62 199
Cooke Cartilage Bx 42 69% IF 90 93 83 150
Ugai Cartilage Ar 12 NR IF 75 75 75 200
Vetto Cartilage Ar 34 54% IF 65 48 48 201

Bx, synovial biopsy; Ar, arthroplasty; NR, not reported; IF, immunofluorescence microscopy. ADefined by colocalized immunoglobulin and complement. 
These studies evaluated the presence of immunoglobulins and complement deposited in joint tissues obtained from patients with RA. This table 
highlights representative studies and is not intended to represent a complete list.
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the cartilage surface becomes the focus of  poorly controlled complement fixation, including via the alterna-
tive pathway (63, 113). Further, ICs deposited or formed on cartilage must be cleared by inflammatory cells 
recruited into the joint, and neutrophils encountering ICs can disgorge their granule enzymes directly into 
the cartilage surface in a potentially injurious process termed “frustrated phagocytosis” (121). Consistent 
with this biology, in murine arthritis, antibody arthritogenicity correlates with cartilage binding (62, 122). 
It is therefore likely that the cartilage surface explains why IC-mediated inflammation in RA manifests pre-
dominantly in the joints — in other words — why RA is an arthritis at all.

Indeed, ongoing formation of ICs within the joint likely represents a key mechanism of disease chronicity. 
In the transient arthritis of serum sickness, joint inflammation resolves once the shower of ICs subsides. In 
chronic inflammatory arthritis, autoantibodies recognizing antigens that are formed or released in the inflamed 
joint, such as citrullinated peptides and DEK, generate an amplification loop whereby joint inflammation begets 
ICs that in turn perpetuate joint inflammation. Feeding into this cycle, IC-mediated MAC deposition on synovial 
fluid neutrophils hyperactivates intracellular PADs to generate citrullinated RA autoantigens (123–125). Micro-
particles are another source of locally generated ICs. Murine and human studies implicate CD41+ (GP1b+) 
microparticles released by platelets and potentially megakaryocytes as important mediators of joint inflamma-
tion, at least in part through IL-1α and IL-1β (126, 127). Platelet microparticles feature citrullinated surface pro-
teins recognized as RA autoantigens, including vimentin and fibrinogen. These microparticles nucleate many 
of the ICs found in RA synovial fluid, creating microparticle-associated ICs (mpICs) (Figure 2 and ref. 128).

Glycosylation as a modulator of  IgG effector function. The ability of  IgG to bind Fc receptors and fix com-
plement depends on IgG Fc glycosylation. A short biantennary glycan, typically 7–13 monosaccharides 
in length, is attached to asparagine 297 in the CH2 region of  each IgG Fc heavy chain. These 2 glycans 
interact with each other and with the protein backbone of  the opposite heavy chain to modulate the struc-
ture of  the Fc region. IgG lacking Fc glycans loses much of  its effector capacity, and in vivo enzymatic 
removal abrogates antibody-mediated arthritis (129). Variation among the greater than 30 possible Fc gly-
coforms fine-tunes the ability of  IgG to interact with ligands such as C1q, the human IC receptor FcγRIIA, 
and mannose-binding lectin. Precise structure-to-function correlation remains controversial, both because 
experimental findings diverge and because murine and human systems overlap incompletely (130). In gen-
eral, glycoforms with reduced galactose and sialic acid are thought to confer enhanced proinflammatory 
capacity, whereas highly galactosylated and sialylated IgG engage antiinflammatory mechanisms to skew 
IgG toward immunomodulatory function. Loss of  sialylation represents a “molecular switch” that converts 
innocuous autoantibodies into antibodies capable of  initiating murine arthritis (109, 131). Desialylation 
enables ICs to activate osteoclasts, thereby contributing to local and generalized bone loss (132). Patients 
with RA and JIA exhibit reduced galactosylation with more modest changes in sialylation, sometimes 
predating overt disease by months or years (133–136). ACPAs accompanying seropositive RA exhibit even 
more marked hypogalactosylation, as well as striking fragment antigen-binding (Fab) glycosylation of  
unknown functional significance (136–138).

Correlative evidence for an etiologic role of IgG Fc glycosylation in human RA comes from pregnancy. 
Pregnancy is accompanied by marked increase in circulating estrogen, the only factor known to modulate 
human IgG glycans in vivo through its capacity to enhance Fc galactosylation (139). Pregnancy is accompa-
nied by a marked decrease in hypogalactosylated IgG, often corresponding temporally with an amelioration 
of RA disease activity. IgG glycosylation normalizes after parturition, again often coincident with flaring RA 
(140, 141). These intriguing correlations suggest that RA improvement in pregnancy may be mediated in part 
through IgG Fc glycosylation, although glycan shifts could still represent either an epiphenomenon or a result 
of reduced inflammation. Indeed, in the mouse, estrogen attenuates arthritis flare in postpartum mice with 
only modest changes in IgG galactosylation (142). It is possible, and even probable, that glycan changes both 
reflect the inflammatory milieu and alter IgG function to potentiate further inflammation. Further study will be 
required to define causality in the relationship between IgG glycan changes and arthritis in the human context.

Arthritis mediated by IgG independent of  ICs. IgG can engender joint inflammation through the molecules 
that they target, without formation of  ICs. ACPA-mediated activation of  osteoclasts and antibodies that 
enhance PAD function are 2 examples (Figure 2).

ACPAs are among the strongest predictors of  a destructive arthritis course (143, 144). Anti–citrullinated 
vimentin antibodies bind to osteoclasts, stimulating osteoclastogenesis and leading to increased bone resorp-
tion (145). The introduction of  anti–citrullinated vimentin antibodies is sufficient to cause periarticular bone 
loss in wild-type mice as well as generalized osteopenia in lymphocyte-deficient Rag-1–/– mice (145, 146). 
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How ACPAs stimulate osteoclastogenesis remains unclear. Studies have implicated both direct binding to 
citrullinated vimentin on osteoclasts and desialylation-dependent engagement of  low-affinity Fc receptors 
(132, 145). Other work implicated IL-8 elaborated by ACPA-stimulated osteoclasts, but the antibodies used 
were later found to lack citrulline specificity, implicating citrulline-independent stimulatory mechanisms 
(34, 147). IL-8 not only promotes further osteoclastogenesis but also is an important neutrophil chemoattrac-
tant, raising the possibility that osteoclasts play a role early in antibody-mediated inflammation as well as in 
later bone erosion, including but not limited to disease mediated by ACPAs.

Antibodies directed against PADs can also be pathogenic. PAD enzymes require supraphysiologic concen-
trations of calcium (5–10 mM in vitro) for optimal citrullination. Intracellular calcium concentrations rarely 
exceed 0.1 mM even with activation, while typical extracellular calcium concentrations approximate 1 mM 
(148). The binding of anti-PAD4 antibody increases the sensitivity of PAD4 to calcium, effectively increasing 
enzymatic activity 10-fold. The anti-PAD3/PAD4 cross-reactive antibody further stabilizes PAD4 enzymatic 
activity, resulting in a 400-fold increase of histone citrullination at low calcium concentrations (148). Both 
anti-PAD4 and anti-PAD3/PAD4 are associated with more erosive arthritis, with the severity of joint erosion 
observed to correlate with PAD4 activity, suggesting that these autoantibodies may accelerate RA (148).

Mechanisms of antibody-independent arthritis
IgG is not the only pathway to inflammatory arthritis. Many patients lack any detectable arthritis-associated 
autoantibodies, and evidence for IgG-mediated inflammation in the joints is common but not uniform. In 
particular, fixation of  complement is a feature of  seropositive RA but is largely absent in seronegative RA, 
psoriatic arthritis, and reactive arthritis (64, 65, 67, 149–152). Neutrophils containing IgG ICs are observed 
almost exclusively in seropositive disease (66). The presence of  ICs in surgically excised arthritic joint tis-
sues is not ubiquitous but rather correlates strikingly with seropositivity (Table 2). Circulating ICs are more 
prevalent in seropositive disease, though methodologic challenges render this finding less clear-cut than in 
synovial fluid (153, 154). These studies may fail to detect arthritis induced by IgG independent of  ICs but are 
consistent with the supposition that a sizable minority of  human inflammatory arthritis arises independently 
of  autoantibodies, a suggestion further supported by the observation that B cell–fostering TPH cells are found 
in much greater abundance in synovium from seropositive than seronegative patients (44).

Animal studies confirm that arthritis can arise independent of  immunoglobulins (Figure 1). For exam-
ple, arthritis may be engendered by an excess of  TNF induced by overexpression or by mRNA dysregula-
tion, reflecting engagement of  pathogenic effector pathways without requirement for an inciting immune 
trigger (155, 156). Arthritis can be mediated directly by pathogenic T cells. Examples include SKG (Saka-
guchi, after its discoverers) arthritis resulting from mutation in Zap70 and arthritis due to deficiency of  IL-1 
receptor antagonist (IL-1ra), discussed further below (157, 158). In all these systems, IgG-independent 
arthritis clinically resembles IgG-dependent arthritis, illustrating how phenotype represents an imperfect 
guide to pathophysiology.

Compared with IgG-dependent arthritis (Figure 2), antibody-independent arthritis is technically more 
difficult to explore experimentally, but several pathways to disease have been dissected mechanistically in 
the mouse (Figures 1 and 3).

CD4+ T cells. In SKG arthritis, a point mutation in the T cell receptor–signaling molecule Zap70 leads 
to failure of  thymic negative selection and escape of  autoreactive T cells (157). Like human patients with 
RA, these mice express RF and other RA-associated autoantibodies and develop erosive arthritis and lung 
inflammation. Despite the presence of  RF, disease is transferable by CD4+ T cells rather than serum. Trans-
fer of  SKG thymocytes, but not T cell–depleted bone marrow, into T and B cell–deficient mice is sufficient 
to engender arthritis, excluding an obligate role for IgG (157). CD4+ T cells directly infiltrate into the 
synovium, where joint inflammation is mediated by TNF-α, IL-1, and IL-6, reminiscent of  RA (157, 159).

γδ T cells. A second example of  IgG-independent joint inflammation results from deficiency of  
IL-1ra (158). Despite the hallmark role of  IL-1 in innate immunity, arthritis in mice lacking this endog-
enous antagonist for both IL-1α and IL-1β is strictly dependent on T cells (160). Excess IL-1 signaling 
promotes the development of  IL-17–producing γδ T cells that mediate arthritis dependent on IL-1β, 
IL-17A, IL-6, and IL-23R (the latter 2 required for development of  Th17-like γδ T cells), as well as 
on pathogenic CD4+ T cells (161–163). γδ T cells are a subpopulation of  T cells that express a limited 
diversity of  T cell receptor rearrangements and exhibit a generally tendency toward autoreactivity. They 
have been described in the synovium and synovial fluid of  RA patients, albeit expressing IFN-γ rather 
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than IL-17A (164). The IL-1ra–deficient mouse may mimic arthritis arising in systemic JIA and its 
adult equivalent, adult-onset Still’s disease, which both exhibit a key role for IL-1 early in the disease 
course (165).

RORγt+CD3+CD4–CD8– entheseal-resident lymphocytes and exFoxP3 cells. Murine arthritis driven by over-
expression of  IL-23 begins as an enthesitis, initiated through activation of  IL-23R–expressing RORγt+C-
D3+CD4–CD8– entheseal-resident lymphocytes (166). A newly discovered lymphocyte population, these 
cells respond to IL-23 signaling to produce inflammatory mediators. In CIA, a population of  pathogenic 
T cells has been identified that appear to be Tregs that have converted to Th17 cells (exFoxP3 cells) (167). 
These cells lose their FoxP3 expression and immunosuppressive function in an arthritic environment, sub-
sequently becoming autoreactive T cells that produce IL-17 and promote more severe arthritis. Whether 
these processes are replicated in human disease is unclear, although enthesitis in spondyloarthritis patients 
exhibits a primarily lymphocytic infiltrate (168, 169).

T resident memory cells. Lymphocytes resident within joint tissues may play a key role in chronic/
recurrent arthritis. Studies have identified T resident memory (TRM) cells as key drivers of  recurrent 
site-specific inflammation in skin (170–172). Inflammatory arthritis can display similar “joint-specific 
memory,” with the same joints flaring again and again in a pattern characteristic of  each individual 
(173). Preliminary evidence suggests that both human and murine synovitis feature TRM cells that could 
nucleate joint-specific flares (174, 175).

Multiple other IgG-independent mechanisms also contribute to inflammatory arthritis (Figure 
3). For example, synovial fibroblasts are key effectors of  joint inflammation, and epigenetic changes 
affecting these cells during the course of  arthritis could convert them into autonomous agents that 
perpetuate local disease through mediator release and tissue invasion (102, 176, 177). Generation of  
endogenous TLR agonists within the inflamed joint, such as heat shock proteins, high-mobility group 
B1 protein, hyaluronan breakdown products, citrullinated fibrinogen, RNA, and ribosomal DNA, could 
supply ongoing IgG-independent stimuli to macrophages and other cells within the joint (178–183). 
Autoinflammatory diseases, such as familial Mediterranean fever, Blau syndrome, and PAPA (pyogenic 
arthritis, pyoderma gangrenosum, and acne), feature transient or persistent arthritis that is thought to 
occur without adaptive immune involvement via innate lineages, such as neutrophils and macrophages. 
Even in arthritis triggered initially by IgG, such antibody-independent mechanisms likely contribute to 
the persistence of  inflammation.

Figure 3. Antibody-independent processes in the initiation and perpetuation of inflammatory arthritis. Multiple cell lineages contribute to the patho-
genesis of inflammatory arthritis independent of antibodies. Murine studies implicate multiple lymphocyte subtypes in specific contexts, including CD4+ 
T cells, exFoxP3-converted Tregs, entheseal-resident T cells, and γδ T cells. CD8+ T cells and B cells/plasma cells are abundant in synovium but their role is 
unclear. Evidence for the presence and function of synovial TRM cells is preliminary. Fibroblasts within the synovium are heterogeneous and contribute via 
mediator production and direct attachment and invasion, including into cartilage. Myeloid cells of multiple types participate actively in disease. Neutro-
phils appear essential for the normal evolution of chronic inflammatory arthritis in most contexts. Local resident macrophages, recruited monocytes, and 
newly differentiated macrophages are implicated both in propagation and in resolution of synovitis. Mast cells can initiate arthritis and are abundant in 
chronic synovitis, but their role in established arthritis is not well defined. Osteoclasts mediate bone erosion and can potentially amplify or even initiate 
joint inflammation. Downstream effector pathways include cytokines (e.g., TNF, IL-1, IL-6, IL-8, IL-17), chemokines such as ligands for the chemokine recep-
tors CCR1 and CXCR2, lipid mediators such as leukotriene B4, proteases, and direct tissue injury. Illustrated by Mao Miyamoto.
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Summary and synthesis
Inflammatory arthritis is a pathogenically complex disease. Disease can arise through either antibody-de-
pendent or antibody-independent pathways (Figures 2 and 3). Long-standing arthritis can engage addition-
al mechanisms, including antibody-independent pathways of  disease perpetuation, even in disease original-
ly sparked by autoantibodies.

Correspondingly, studies in murine models should be understood as testing specific mechanisms within 
arthritis, rather than arthritis biology in its entirety. This caveat is particularly important for models medi-
ated by autoantibody transfer, which are experimentally highly tractable but cannot be expected to mirror 
all aspects of  chronic long-standing RA. Mice and humans differ immunologically in important respects, 
including Fc receptor biology and IgG Fc glycosylation. A nuanced approach to animal data will restrain 
overly optimistic extrapolation to human disease while avoiding paralyzing skepticism about experimental 
models, which still represent an irreplaceable tool to interrogate disease pathogenesis in vivo.

Each mechanism outlined here represents a disease target. For autoimmune arthritis, whether mediat-
ed through antibodies or other routes, restoration of  immune tolerance remains the “holy grail.” Short of  
this goal, numerous links in the pathogenic chain are susceptible to intervention, including antigen presen-
tation, antibody generation, IgG antigen–binding domain and Fc glycosylation, and cytokines and cellular 
actors that mediate inflammation and tissue injury. Relevant targets will vary with disease category and 
chronicity. Divergent and partial treatment responses likely reflect the failure to address all active pathways. 
In aspiring to understand arthritis mechanisms better, we seek the ability to provide more specific and effec-
tive interventions and thereby attain superior clinical outcomes.
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