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Introduction
New technologies for characterizing cell populations are being implemented to more deeply describe the cell 
surface receptor phenotype and gene transcriptional signature at the single-cell level (1, 2). Benefits of  sin-
gle-cell approaches include examination of  heterogeneity within the sample, and the most recent advances 
permit use of  samples with very limited cell numbers for high-dimensional characterization of  cell surface 
phenotype or transcriptome. Single-cell RNA sequencing (scRNA-Seq) has been used to elucidate hemato-
poietic differentiation (3–5) and immune cell subsets (6), including dendritic cells and monocytes (7), and 
innate lymphoid cells (8). Mass cytometry has been applied to the study of  tissue-infiltrating immune cells 
(e.g., melanoma, ref. 9; renal cell carcinoma, ref. 10; lung cancer, ref. 11; and breast cancer, ref. 12).

Expanding these new single-cell approaches to patient samples requires a clear understanding of  their 
correlation with established techniques, including flow cytometry. To facilitate and validate analysis of  
large databases of  scRNA-Seq, we set out to provide a data set of  human bone marrow analyzed by both 
scRNA-Seq and deep immunophenotyping. Our reference cohort includes a broad range of  donor ages in 
recognition of  age-related variation in the healthy population.

Results
Healthy donor characteristics. Twenty healthy volunteers were recruited for bone marrow aspiration procedures. 
The cohort consisted of  10 males and 10 females with ages ranging from 24 to 84 years old and median age 
of  57 years. A second bone marrow aspiration was performed for 2 donors (Ck, Sk) (biological replicates) either 
2 or 5 months after their first aspiration, respectively. Cryopreserved cells from all 20 donors were analyzed by 
droplet-based scRNA-Seq and flow cytometry, and additional cryopreserved vials for 8 donors were analyzed 
by mass cytometry for T cell phenotyping, as well as bulk RNA sequencing, as summarized in Table 1.

Single-cell RNA sequencing. Droplet-based scRNA-Seq of  bone marrow mononuclear cells (BMMCs) 
for all donor samples was performed with goal minimum sequencing depth of  50,000 reads/cell and 
detected a mean of  880 genes/cell (range 575–1,390 genes/cell, Table 1). Greater than 90,000 cells were 
captured; using quality filters of  at least 500 genes per cell and less than 8% mitochondrial RNA content, 
76,645 cells were analyzed in the final analysis.

New techniques for single-cell analysis have led to insights into hematopoiesis and the immune 
system, but the ability of these techniques to cross-validate and reproducibly identify the 
biological variation in diverse human samples is currently unproven. We therefore performed a 
comprehensive assessment of human bone marrow cells using both single-cell RNA sequencing 
and multiparameter flow cytometry from 20 healthy adult human donors across a broad age range. 
These data characterize variation between healthy donors as well as age-associated changes in cell 
population frequencies. Direct comparison of techniques revealed discrepancy in the quantification 
of T lymphocyte and natural killer cell populations. Orthogonal validation of immunophenotyping 
using mass cytometry demonstrated a strong correlation with flow cytometry. Technical replicates 
using single-cell RNA sequencing matched robustly, while biological replicates showed variation. 
Given the increasing use of single-cell technologies in translational research, this resource serves as 
an important reference data set and highlights opportunities for further refinement.
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To account for sample variations among donors, alignment of  all samples was performed in Seurat 
using canonical correlation analysis (CCA), then visualized using t-distributed stochastic neighbor embed-
ding (t-SNE). Cell clusters were distinguished using the Louvain clustering algorithm implemented in 
Seurat. Compiled analysis of  all donor cells is annotated in Figure 1A, with the contribution of  each indi-
vidual donor displayed in Supplemental Figure 1; supplemental material available online with this article; 
https://doi.org/10.1172/jci.insight.124928DS1. All major previously identified populations of  BMMCs 
were present in the clustered scRNA-Seq analysis.

Single-cell trajectory analysis was performed using Monocle 3. As there were potentially multiple dis-
joint trajectories in this complex data set containing a large number of  cells, Uniform Manifold Approxi-
mation and Projection (UMAP) was used for dimension reduction. The resulting development trajectories 
clearly display the major lymphoid, myeloid, and erythroid lineages of  hematopoiesis with correct ordering 
of  developmental stages (Figure 1B). Trajectories of  erythroid and myeloid lineages could also be created 
using an earlier, well-validated, version of  this software (Monocle 2, see Supplemental Figure 1) and were 
consistent with those observed for the full data set.

Annotation of  cell cluster identities was determined using a panel of  canonical gene expression, with 
the expression patterns for a subset of  these genes displayed in Figure 1C. Analysis of  each donor sample 
individually using principal component analysis (PCA) in Seurat revealed suboptimal quantification of  
frequencies of  some transcriptionally similar cell subsets, including those annotated as effector T cells and 
NK cells. Such clusters were typically well delineated for each individual sample when using CCA in the 
context of  the entire data set (Supplemental Figure 1).

A potential use of  scRNA-Seq is to compare across 2 or more samples. To confirm the validity of  

Table 1. Heathy volunteer sex and age at time of bone marrow aspiration

Sample Sex Age Flow 
cytometry

Mass 
cytometry

Bulk RNA scRNA-Seq Technical 
replicate

Cells Reads/cell Genes/cell

T F 24 x x x x 4,293 88,461 1,000
W F 28 x x 3,643 47,132 649
E M 30 x x 3,939 69,061 575
R M 31 x x 3,593 131,257 669
F F 41 x x 3,746 75,712 846
J F 43 x x x x 3,446 108,679 970
U F 46 x x x x 4,118 85,295 1,143
B M 47 x x x x 3,293 99,593 794
H F 50 x x x x 5,013 63,164 883
O M 50 x x x x 4,516 47,778 851
SkA F 55 x x Sk1 1,138 323,589 823

x Sk2 4,726 163,732 820
SA 56 x x S1 2,437 113,302 1,089

x S2 2,367 83,847 1,163
L M 57 x x 4,548 67,199 950
P F 58 x x 3,383 223,652 1,390
G M 58 x x 4,283 89,208 667
A F 59 x x x x 2,994 159,501 1,303
CkA F 59 x x 1,052 349,511 761
CA 60 x x x x C1 3,556 62,645 692

x C2 3,136 58,675 692
M M 60 x x 3,964 92,780 875
Q M 66 x x 1,700 126,143 702
N M 67 x x 4,522 110,195 881
K M 84 x x 7,247 43,872 879

Sk and S are 2 samples taken from the same donor at different times (i.e., biological replicates). Ck and C 2 samples taken from the same donor at different times 
(i.e., biological replicates). Samples Sk, S, and C were split and used for technical replicates of scRNA-Seq. ABiological replicate time points for a second longitudinal 
bone marrow aspirate from the same volunteers. Assays from matched cryopreserved BMMC vials are indicated. scRNA-Seq cell counts and sequencing depth 
(reads per cell and genes per cell) are listed for each donor and replicate.
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Figure 1. Single-cell RNA sequencing of healthy bone marrow cells. (A) Cluster identification visualized using t-SNE. HSPCs: hematopoietic stem/
progenitor cells; cDCs: conventional DCs; pDCs: plasmacytoid DCs. (B) Single-cell trajectory analysis using UMAP/Monocle 3. Color is as in (A). 
(C) Examples of canonical gene expression used for annotation. (D) Reproducibility of technical replicates for single-cell RNA sequencing. Linear 
regression line displayed in gray.
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scRNA-Seq for this approach, assay reproducibility was determined by preparing duplicate, side-by-side 
libraries from cells thawed from the same cryopreserved vial, for a total of  3 cryopreserved samples. 
Cell subtype quantification for each of  these technical replicate pairs matched robustly (Figure 1D). 
The optimum number of  cells required to identify, using scRNA-Seq, subpopulations within a heteroge-
nous sample remains an area of  interest (13). Technical replicates ranged from 1,138 to 6,692 cells from 
the same sample (Table 1).

Flow cytometry. Thirteen-color flow cytometry using 5 customized panels (T, B, and NK cells; monocytes; 
and DCs see Supplemental Table 1) designed to allow deep immunophenotyping of  the predominant cell 
populations found in human bone marrow was performed on all samples. Approximately 1 million cells 
were stained for each panel and a median of  196,000 CD45+ events collected (25th–75th percentile: 100,000–
278,000 events). The gating strategy is shown in Supplemental Table 2. Most frequent cell subtype populations 
observed were, in order, T cells, monocytes, B cells, NK cells, DCs, and HSPCs (see Supplemental Figure 2).

Paired analysis of  the same sample by both transcriptome and cell surface phenotype offers a pow-
erful opportunity to compare cell population frequencies determined by these methods. The propor-
tion of  major cell populations is summarized for scRNA-Seq and flow cytometry in Figure 2A. Sam-
ple-by-sample correlations for all of  these populations are shown in Figure 2B. It is well established 
that the memory T cell population increases with increasing age in humans, likely due to response to 
viral infection (in particular CMV), and this trend was reproduced in our cohort using both scRNA-Seq 
and flow cytometry (Supplemental Figure 2 and ref. 14). Two subjects had a second bone marrow aspi-
ration performed at either 2 or 5 months after their first aspiration. These biological replicates showed 
good concordance by flow cytometry but showed variation by scRNA-Seq particularly in lower fre-
quency cell subsets, likely from sampling error (Supplemental Figure 2).

While concordance between these 2 modalities was generally good, it appeared that T cell frequency 
was elevated and NK cell frequency decreased in scRNA-Seq as compared with flow cytometry. This led to 
a more detailed examination of  T cell subsets and orthogonal validation of  cell surface immunophenotyp-
ing using a third single-cell modality.

Mass cytometry. To more deeply characterize immune populations within healthy bone marrow, and to 
validate our flow cytometry results, T cell phenotyping was performed by mass cytometry using a 34-marker 
panel for a subset of  8 donors. Using Cytobank software, CD45+ cells were visualized using viSNE across 
the panel of  markers (Figure 3A and Supplemental Figure 3). Correlation between mass cytometry and flow 
cytometry for CD4+ and CD8+ T lymphocyte subsets was strong, as shown in Figure 3B.

To further compare mass cytometry and flow cytometry with scRNA-Seq of  T cell populations, the fre-
quencies of  T cell subsets for this cohort of  8 donors were determined using all 3 of  these methods, shown 
in Figure 3C, with sample correlations reported in Figure 3D. Comparing frequencies of  T cell populations 
between mass cytometry and scRNA-Seq confirmed a small but persistent skewing in the identification 
of  NK and T cells. Using Bland-Altman calculations, the mean difference between scRNA-Seq and mass 
cytometry for T cells was –6.5% (95% CI: –29% to 16%) and for NK cells was 3.2% (95% CI: –1.1% to 7.6%).

CD8+ cytotoxic T cells and NK cells are known to have substantial overlap at the transcriptome level 
(15). To better understand systemic bias in the frequency of  NK or T cells identified, we confirmed that 
overlapping gene signatures were found in clusters annotated as NK or T cells in this scRNA-Seq data set 
(Supplemental Figure 4). The reasons for this bias are likely, however, multifactorial.

Bulk RNA sequencing. Analysis of  bulk sample RNA expression has been used to attempt to decon-
volute the proportion of  each cell subtype in human tissues (16, 17). Finally, as an additional resource, 
stranded whole transcriptome sequencing of  RNA isolated from thawed BMMCs was performed on 
samples from all 8 subjects for which mass and flow cytometry and scRNA-Seq were available. Initial 
analysis using deconvolution algorithms that attempt to predict the proportion of  cell subpopulations is 
shown in Supplemental Table 3.

Discussion
Changes in the immune system (14) and hematopoiesis (18) occur during human aging. Using an unbi-
ased approach based on unsorted human BMMCs, we describe the major cell populations of  healthy 
human bone marrow from a cohort of  donors over a wide range of  adult age with multiple high-dimen-
sional single-cell techniques. This resource serves as a complement to existing data sets that have consist-
ed primarily of  younger donors without associated paired immunophenotyping. Our data set provides 
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Figure 2. Comparison of single-cell RNA sequencing and flow cytometry assessment of bone marrow cell type population frequencies from 22 sam-
ples (taken from 20 donors, including 2 biological replicates). (A) Frequencies for major cell populations in human bone marrow shown for single cell 
scRNA-Seq and flow cytometry. Each dot represents a value from 1 sample. The thick line within each box represents median value. Box spans first to 
third quartile (IQR). Whiskers extend to the largest or smallest value no farther than 1.5 IQRs from the box. (B) Individual sample comparisons by scatter 
plot for each cell population. Each dot represents the cell subset frequency from 1 sample. Population comparisons are shown in the background in gray. 
Population frequencies are reported as percentage of all CD45+ cells.

https://doi.org/10.1172/jci.insight.124928


6insight.jci.org   https://doi.org/10.1172/jci.insight.124928

R E S E A R C H  A R T I C L E

Figure 3. Comparison of single-cell RNA sequencing, mass cytometry, and flow cytometry assessment of T lymphocyte frequencies in human bone 
marrow. (A) Mass cytometry for phenotyping of T cell populations visualized using viSNE analysis with expression of key markers shown. (B) Com-
parison of cell frequencies for each donor determined by mass cytometry (CyTOF) and flow cytometry. CM: central memory cells; EM: effector memory 
cells; TEMRA: terminally differentiated effector memory T cells; TE: effector T cells; DNT: double-negative T cells; DPT, double-positive T cells. (C) T cell 
frequencies for cell populations identified by mass cytometry, flow cytometry, and scRNA-Seq. Each dot represents a value from 1 sample. The thick line 
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a resource of  scRNA-Seq, flow cytometry, and mass cytometry data for healthy control cohorts across 
the full range of  adulthood, providing not only cell population frequencies and characteristics but also 
highlighting individual variation in human cohorts.

Using scRNA-Seq of over 76,000 cells from 20 healthy donors, all the major bone marrow mononucle-
ar populations are identified, and overall population frequencies are comparable to flow cytometry of the 
matched samples. A primary limitation is distinguishing cell populations such as NK cells and CD8+ effector 
T cells, which have overlapping transcriptional programs with a small number of distinguishing genes captured 
by droplet-based scRNA-Seq. To overcome this limitation and provide additional reference data beyond previ-
ous reports of major healthy bone marrow populations by flow cytometry (19) and mass cytometry (20, 21), we 
used the strength of mass cytometry to resolve T cell subpopulations (22), both to validate our flow cytometry 
results and provide quantification of rare T cell subpopulations within healthy human bone marrow.

As a data resource, these high-dimensional approaches to bone marrow characterization add valuable 
information on transcriptional and cell surface marker coexpression. The growing number of  bioinformat-
ics tools for mass cytometry (23) and scRNA-Seq (24, 25) will benefit from reference data sets for validation 
and integrated comparison across techniques. Future opportunities for integrating these data sets include 
droplet-based sequencing with oligonucleotide-tagged antibodies, including Cellular Indexing of  Transcrip-
tome and Epitopes sequencing (26), RNA expression and protein sequencing (27), and AbSeq (28), which 
can be compared to this reference set of  cell surface protein and transcriptome expression. As techniques 
(29) and repositories (30) of  high-dimensional single-cell human data sets are expanded, validating the 
observed cell identities will be a critical aspect of  interpreting large–data set analysis.

Additional aliquots of  bone marrow aspirate from this cohort together with paired blood samples, 
that were not yet analyzed, have been stored. Should transformative technologies emerge over the next 
few years, we would be willing, subject to relevant technology transfer and clinical regulatory approv-
als, to share remaining samples with academic investigators for additional benchmarking and valida-
tion. In summary, this resource provides a reference data set for cell populations in healthy human 
bone marrow across a wide age range as assessed by multiple single-cell approaches. We show that 
scRNA-Seq quantification of  marrow-resident cell populations has good concordance with immuno-
phenotyping by flow and mass cytometry with some discrepancies in T and NK subsets. We hope this 
unique combined data set will prove useful both to those seeking to refine or innovate bioinformatic 
algorithms for scRNA-Seq data and to those investigators hoping to apply these powerful single-cell 
technologies in their own research.

Methods
Bone marrow aspirate collection. Using standard operating procedures, mononuclear cells from bone mar-
row aspirates were isolated using Ficoll density gradient separation and cryopreserved in 90% FBS/10% 
DMSO for storage in liquid nitrogen. Assays were performed as listed in Table 1 using matched cryopre-
served vials from each donor.

Single-cell RNA sequencing. scRNA-Seq was performed using 10X Genomics Single Cell 3′ Solution, ver-
sion 2, according to the manufacturer’s instructions (protocol rev A). Libraries were sequenced on HiSeq3000 
(Illumina) and analyzed using Cell Ranger version 2.0.0 (10X Genomics). Quality control metrics were used 
to select cells with mitochondrial gene percentage less than 8% and at least 500 genes detected. Samples were 
analyzed using Seurat (https://satijalab.org/seurat/) using CCA with Louvain clustering and visualized by 
t-SNE (31). Developmental trajectories were created using Monocle versions 2 and 3 (32–34), the latter using 
UMAP for dimension reduction (35).

Flow cytometry. BMMCs were thawed in RPMI 1640 (Gibco) with 10% FBS and resuspended in cell 
staining buffer. Benzonase nuclease (Sigma-Aldrich, catalog E1014-25KU) was added for some samples 
during thawing to minimize cell clumping. Cells were blocked with Human TruStain FcX Fc receptor 
blocking solution (BioLegend, catalog 422302) and stained with antibodies listed in Supplemental Table 
1 followed by LIVE/DEAD Fixable Yellow stain (Life Technologies Corporation) and fixation with 1% 

within each box represents median value. Box spans first to third quartile (IQR). Whiskers extend to the largest or smallest value no farther than 1.5 IQRs 
from the box. (D) Individual sample comparisons by scatter plot for each cell population. Each dot represents the cell subset frequency from 1 sample (n 
= 8). All population comparisons are shown in the background in gray.
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formaldehyde. Data were acquired with a BD Biosciences (BD) LSRFortessa equipped with 5 lasers (355-, 
407-, 488-, 532-, and 633-nm wavelengths) and 22 PMT detectors using DIVA 8 software using the High 
Throughput Sampler system (BD) at a flow rate of  2.5 μl/second in a 96-well U-bottom tissue culture 
plate (see Supplemental Table 4). Compensation controls were performed using single-color staining of  
compensation beads (BD), and daily quality assurance was performed using Cytometer Setup and Track-
ing beads (BD) as per manufacturer’s recommendation along with 1-peak Rainbow beads (BD) and 8-peak 
beads (SPHEROTEC) (36, 37). Analysis after acquisition was performed using FlowJo version 9.9.6 (Tree 
Star Inc). Analysis excluded debris and doublets using light scatter measurements and dead cells by live/
dead stain. Gating strategies used to identify immune cell subsets are provided in Supplemental Table 2.

Mass cytometry. Thawed BMMCs were stained for 34 markers using the Maxpar Complete Human T 
Cell Immuno-Oncology Panel Set (Fluidigm), according to manufacturer instructions (see also Supple-
mental Table 5). Briefly, cells were thawed, washed, incubated with cisplatin cocktail for viability, fixed 
in 1.6% formaldehyde, and permeabilized. Cells were then stained with the antibody cocktail, incubated 
with intercalation solution, mixed with EQ Four Element Calibration Beads, and acquired with a Helios 
mass cytometer (Fluidigm). Gating and viSNE analysis (38) were performed using Cytobank (https://
www.cytobank.org/). Initial analysis excluded doublets using DNA content and nonviable cells using 
cisplatin. CD45+ cells were gated for viSNE analysis of  100,000 total events from all analyzed samples.

Bulk RNA sequencing. RNA was harvested from thawed cell vials of  BMMCs using AllPrep kits (QIA-
GEN). Libraries were prepared using TruSeq Stranded Total RNA Sample Preparation Kit (Illumina) with 
1 μg of  RNA input. Sequencing was performed by paired-end 75 nt on Illumina HiSeq 3000. FASTQ files 
were mapped to using kallisto, and gene counts were tabulated using tximport. Deconvolution was per-
formed using xCell version 1.1 (http://xcell.ucsf.edu/, ref. 16) or CIBERSORT using LM22 gene signature 
and 100 permutations (https://cibersort.stanford.edu/index.php, ref. 17).

Sequencing data availability. FCS files for flow cytometry and mass cytometry data sets have been depos-
ited in FlowRepository (FR-FCM-ZYQ9, FR-FCM-ZYQB). scRNA-Seq and bulk RNA sequencing data 
sets have been deposited in the National Center for Biotechnology Information’s Gene Expression Omni-
bus (GSE120221, GSE120446).

Statistics. Data were analyzed and visualized, and statistical comparisons were performed with R 
(cran.r-project.org). Bland-Altman analysis (39) was implemented in the BlandAltmanLeh package 
version 0.3.1.

Study approval. Healthy volunteers were recruited for bone marrow aspirate collection at the NIH. This 
research was approved by the National Heart, Lung, and Blood Institute Institutional Review Board, and 
all participants provided oral and written informed consent.
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