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Introduction
Insufficient FOXP3+ Treg control of  T cell–mediated destruction of  β cells likely contributes to type 
1 diabetes (T1D) (1). Monogenic mutations in FOXP3 resulting in a lack of  functional Tregs lead to 
T1D (2), and several T1D risk alleles occur in Treg-associated genes (e.g., SNPs in CD25, PTPN2, 
and PTPN22) (1). Accordingly, multiple studies are testing whether immunotherapy-based methods 
to boost Treg function can prevent or delay T1D progression (1, 3, 4). For example, inflammatory 
cytokine blockade (e.g., ustekinumab, αIL-12/23p40; ref. 5), costimulation targeting (e.g., alefacept, 
LFA3-4-Ig; ref. 6), or Treg expansion (e.g., low-dose IL-2; cellular therapy; refs. 7, 8) aims to restore 
the immunoregulatory balance. However, the availability of  clinically applicable tests to measure 

BACKGROUND. Multiple therapeutic strategies to restore immune regulation and slow type 1 
diabetes (T1D) progression are in development and testing. A major challenge has been defining 
biomarkers to prospectively identify subjects likely to benefit from immunotherapy and/or measure 
intervention effects. We previously found that, compared with healthy controls, Tregs from children 
with new-onset T1D have an altered Treg gene signature (TGS), suggesting that this could be an 
immunoregulatory biomarker.

METHODS. nanoString was used to assess the TGS in sorted Tregs (CD4+CD25hiCD127lo) or peripheral 
blood mononuclear cells (PBMCs) from individuals with T1D or type 2 diabetes, healthy controls, 
or T1D recipients of immunotherapy. Biomarker discovery pipelines were developed and applied to 
various sample group comparisons.

RESULTS. Compared with controls, the TGS in isolated Tregs or PBMCs was altered in adult new-
onset and cross-sectional T1D cohorts, with sensitivity or specificity of biomarkers increased by 
including T1D-associated SNPs in algorithms. The TGS was distinct in T1D versus type 2 diabetes, 
indicating disease-specific alterations. TGS measurement at the time of T1D onset revealed an 
algorithm that accurately predicted future rapid versus slow C-peptide decline, as determined by 
longitudinal analysis of placebo arms of START and T1DAL trials. The same algorithm stratified 
participants in a phase I/II clinical trial of ustekinumab (αIL-12/23p40) for future rapid versus slow 
C-peptide decline.

CONCLUSION. These data suggest that biomarkers based on measuring TGSs could be a new 
approach to stratify patients and monitor autoimmune activity in T1D.
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changes in immunity during such trials is limited (3); the search for biomarkers to stratify patients 
likely to respond to a given therapy and track changes in immune regulation is ongoing (4, 9).

We previously developed a composite biomarker assay that measures expression of  37 genes and 
discriminates between Tregs and conventional T cells (Tconvs) regardless of  activation state and showed 
that Tregs from pediatric new-onset T1D patients have a significantly altered gene signature (10). Here, 
we tested whether Treg gene signatures (TGSs) could also identify Treg alterations in adults with T1D 
and investigated the predictive power of  TGS-based biomarkers to predict the rate of  C-peptide decline.

Results
Adults with T1D have an altered TGS in sorted Tregs and PBMCs. We previously found that pediatric new-on-
set T1D Tregs had a significantly different TGS compared with healthy children (10) and tested whether 
this was also true in adults. Tregs (CD4+CD25hiCD127lo) were isolated from young adults with new-onset 
T1D (18–35 years of  age, <100 days after diagnosis, n = 20, Figure 1A), a cross-sectional T1D cohort (ref. 
9, n = 40, Figure 1B), or age- and sex-matched healthy controls (HCs, n = 10 or n = 37). Expression of  the 
TGS was measured using a nCounter FLEX, and biomarker discovery analysis was applied. We found 
that the TGS distinguished between T1D and healthy Tregs with high area under the receiving operating 
characteristic curves (AUCs) in both cohorts (Figure 1, A and B, AUC = 0.830 and = 0.953, respectively). 
Cutoffs for sensitivity (true positive) and specificity (true negative) determination were set between 0.25 
and 0.75, revealing high sensitivity and specificity for both cohorts.

Genetic risk alleles, including SNPs in CD25, PTPN2, and PTPN22, are associated with CD25 expres-
sion, response to IL-2, FOXP3 stability, and Treg function in T1D (1). We thus hypothesized that genotype 
information might refine biomarker accuracy. Biomarker discovery using the cross-sectional T1D cohort and 
including genotype(s) revealed that while overall AUCs were similar to those obtained without genotype, 
there was slightly improved sensitivity in several cases (Figure 2). For example, adding CD25 rs2104286 
number of  disease variants improved the sensitivity from 0.875 (Figure 1B) to 0.950 (Figure 2C), but overall 
inclusion of  SNPs only modestly improved accurate discrimination between healthy and T1D Tregs.

Clinical application of  biomarker tests should ideally entail minimal sample processing to sim-
plify implementation, reduce processing errors, and increase reproducibility. We therefore next 
examined whether differential TGS expression could be detected in unfractionated peripheral blood 
mononuclear cells (PBMCs). Gene expression in PBMC lysates from adult new-onset (n = 19, Figure 
3A) and cross-sectional (n = 35, Figure 3B) T1D cohorts and age- and sex-matched controls (HC, 
n = 10 or n = 38) were measured, and biomarker discovery analysis was applied. Surprisingly, gene 
expression in PBMC lysates also revealed highly sensitive and specific algorithms that discriminated 
between HCs and new-onset or cross-sectional T1D cohorts (AUC = 0.895 or = 0.977, respectively). 
Adding genotype information to biomarker discovery generated near perfect classification of  T1D 

Figure 1. Altered intrinsic Treg gene signature in adults with T1D. CD25hiCD127lo Tregs were sorted from (A) adults 
with new-onset T1D (n = 20) or (B) a cross-sectional T1D cohort (n = 41) and age- and sex-matched controls (n 
= 10 for A or n = 37 for B). The Treg gene signature in the resulting lysates was measured on the nCounter FLEX 
platform. Biomarker scores and details (model of biomarker analysis selected [elastic net {en}], number [n] of 
genes, AUC, sensitivity, and specificity) for the best algorithm differentiating between T1D and healthy controls 
are indicated next to biomarker score dot plots. Horizontal lines represent means, with SD represented by error 
bars; dashed horizontal lines represent cutoffs for sensitivity and specificity calculations.
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Figure 2. Addition of Treg-associated T1D SNPs enhances sensitivity of Treg-based algorithms. New algorithms were 
created using combinations of the gene signature data from sorted Tregs (cross-sectional T1D and healthy cohorts), 
and a single indicated SNP genotype was included as a categorical value (i.e., each genotype given a specific weight) 
or as the number of disease variants/alleles (NDV) (i.e., 0, 1, or 2) encoding the indicated SNP. Shown are the best 
algorithms for each SNP (A) genotype included as categorical value and (B–H) included as NDVs. (I) Biomarker score 
and algorithm for gene signature data combined with the average number of (Avg) disease variants for all SNPs 
assessed in A–H. Horizontal lines represent means, with SD represented by error bars; dashed horizontal lines repre-
sent cutoffs for sensitivity and specificity calculations.
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versus HCs with most AUCs, sensitivity, and specificity >0.900 (Figure 4). Thus, the inclusion of  
Treg-associated SNPs is valuable when assessing changes in the overall immunoregulatory balance 
by measuring the TGS in PBMC lysates.

Differences in gene usage between Treg- and PBMC-derived algorithms. The varying number and identity of  
genes in each best-performing algorithm led us to compare gene usage across algorithms derived from Tregs 
versus PBMCs in the cross-sectional T1D cohort (Figure 5). We found that there were 10 core genes in all of  
the best-performing algorithms derived from sorted Tregs (Figure 5A). These included genes associated with 
DNA accessibility (METTL7A, a methyltransferase), transcription (ZNF532, RBMS3), translation (RPL23A, 
a ribosomal protein), signal transduction (VAV3, TCR-mediated signaling; ref. 11), and cytokine receptors 
(CSF2RB, IL1R1, IL7R).

Examination of  the PBMC-based algorithm also revealed 10 core genes (Figure 5B), with notable 
similarities and differences to the Treg-derived algorithms. For example, FOXP3 (significantly lower 
expression in T1D PBMCs versus controls, P = 0.0034, data not shown) and TRIB1 (significantly higher 
expression in T1D PBMCs versus controls, P < 0.0001, data not shown) were included in all PBMC-based 
algorithms but not in any derived from sorted Tregs. In contrast, IL1RN and RPL23A were always present 
in both Treg- and PBMC-based algorithms. Hence, PBMC-based algorithms may detect changes in Treg 
to Tconv ratios that are eliminated when analyzing TGS of  sorted Tregs.

TGS algorithms in type 1 versus type 2 diabetes. TGS changes could be related to poor glucose homeo-
stasis rather than a change in immune regulation. We thus measured the TGS in sorted Tregs or PBMCs 
from type 2 diabetes (T2D) patients and reran the age- and sex-matched T1D and HC lysates in parallel, 
in this case using the nCounter SPRINT system. Principle components analysis was performed separately 
on Treg and PBMC data to highlight differences between patients (i.e., HC vs. T1D vs. T2D) rather than 
reiterate differences present between sample types (i.e., Tregs vs. PBMCs). Analysis of  the unweighted 
TGS revealed distinct clustering of  T2D, T1D, and HCs for both Treg and PBMC samples (Figure 6).

For these experiments, since we reran T1D and HC cohort samples from Figure 1 and Figure 3 with 
the T2D samples on the nCounter SPRINT system, we also had the opportunity to test T1D versus HC 
algorithms from Figure 1B “off-the-shelf,” finding excellent replication of  the AUC (AUC = 1.000) and, 
without changing cutoffs, perfect sensitivity (sensitivity = 1.000) but low specificity (specificity = 0.222, 
Figure 7A). New biomarker analysis comparing T1D to T2D, or T2D to HC, using Treg lysates also 
revealed algorithms that were highly sensitive and specific (AUCs > 0.9, Figure 7, B and C). Similar 
results were obtained when PBMC lysates were analyzed. “Off-the-shelf ” application of  the algorithm 
from Figure 3B revealed a high AUC (AUC = 0.922) and sensitivity (sensitivity = 0.900), but low spec-
ificity (specificity = 0.444, Figure 7D). As with sorted Tregs, new biomarker discovery in PBMCs also 
revealed distinct gene expression in T1D versus T2D and between T2D and HCs (Figure 7, E and F). 
Each cohort comparison was defined by distinct sets of  genes (Figure 7, G and H), indicating there are 
intrinsic and extrinsic differences in Treg biology in people with T1D or T2D and HCs.

Figure 3. Detection of an altered Treg gene signature in PBMCs from adults with T1D. The Treg gene signature was 
measured in PBMCs from (A) adults with new-onset T1D (n = 19) or (B) a cross-sectional T1D cohort (n = 36) and age- 
and sex-matched controls (n = 10 for A or n = 37 for B). Biomarker scores and details (as described in Figure 1; differ-
ential expression was assessed using a 2-tailed unpaired moderated t test from the LiMMa R package [ref. 22], with 
a P value threshold of 0.1) for the best algorithm differentiating between T1D and healthy controls are indicated next 
to biomarker score dot plots. Horizontal lines represent means, with SD represented by error bars; dashed horizontal 
lines represent cutoffs for sensitivity and specificity calculations.
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Figure 4. Addition of Treg-associated T1D SNPs enhances sensitivity of PBMC-based algorithms. New algo-
rithms were created using combinations of gene signature data from PBMCs (isolated from cross-sectional T1D 
and healthy cohorts) and a single indicated SNP genotype included as categorical value (i.e., each genotype 
given a specific weight) or as the number of disease variants/alleles (NDV) (i.e., 0, 1, or 2). (A and B) Genotype 
was included as categorical value, and (C–H) genotype was included as NDVs. (I) Biomarker scores and algo-
rithm details combining gene signature data and the average number of (Avg) disease variants across all SNPs 
assessed. Horizontal lines represent means, with SD represented by error bars; dashed horizontal lines represent 
cutoffs for sensitivity and specificity calculations. glm, general linearized model.
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Application of  the TGS as clinical trial monitoring tool. A limitation of  T1D disease management and clin-
ical trials is the lack of  noninvasive biomarkers to predict C-peptide trajectory and measure intervention 
benefit (9). Hence, we asked whether the TGS might predict disease trajectory. Together with the JDRF 
Biomarker Working Group and the Immune Tolerance Network, we obtained longitudinal samples from 
the placebo arms of  the T1DAL (Type 1 Diabetes and Alefacept) and START (Study of  Thymoglobulin 
to Arrest Type 1 Diabetes) trials (9). Subjects were divided into tertiles with slow, moderate, or rapid 
C-peptide decline, as determined by mixed meal tolerance tests (MMTTs), according to absolute change 
in C-peptide levels from baseline (<100 days after diagnosis) to 24 months later (Figure 8A).

We measured the TGS in Treg and PBMC lysates from month 0 samples and performed biomarker 
discovery, seeking an algorithm that could predict future rapid versus slow C-peptide decline. Although 
the sample size was small (n = 7 rapid vs. 9 slow decline), the TGS in Treg lysates predicted C-peptide 
decline with an AUC = 0.730 (Figure 8B). Subjects with a moderate rate of  C-peptide decline showed 
an intermediate biomarker score. Furthermore, plotting normalized gene expression of  month 0 Treg 
lysates showed trends in line with C-peptide decline (Figure 8C). Specifically, expression of  all 4 genes 
incorporated in the algorithm either increased (C8ORF70, PMSL11, STAM) or decreased (ICA1), with 
progressively worse future C-peptide decline. Expression of  2 additional genes not incorporated in the 
algorithm, ID2 and ZBTB38, also showed trends in line with C-peptide decline. In contrast, biomarker 
analysis of  PBMC lysates was ineffective at discriminating between these groups (data not shown), sug-
gesting that Treg-intrinsic alterations rather than an overall change in immunoregulatory balance may be 
better able to predict future disease course.

Finally, we tested if  the TGS could predict C-peptide decline in response to immunotherapy. Specifi-
cally, we used samples from a phase I/II safety trial of  ustekinumab (αIL-12/23 p40) in adult new-onset 
T1D (NCT02117765). Ustekinumab is commonly used in psoriasis and inflammatory bowel disease (12), 

Figure 5. Differential gene usage in Treg- versus PBMC-derived algorithms. Summary of the genes present in the best-performing algorithms 
from the cross-sectional T1D and healthy cohorts. (A) Treg-based algorithms described in Figure 1B and Figure 2. (B) PBMC-based algorithms 
described in Figure 3B and Figure 4. Each of the 37 mRNAs measured is listed; gray and white squares indicate genes that were or were not present 
in the best-performing algorithm, respectively.
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and its ability to block IL-12 and IL-23 might restore the abnormal balance of  T helper subsets and/or 
IL-17–producing Tregs that we (13) and others (14, 15) previously described in T1D. C-peptide was mea-
sured by MMTT pretreatment (month 0) and at 1 and 12 months after ustekinumab treatment. Subjects 
were divided into slow (n = 11) or rapid (n = 5) C-peptide decline based on reported expected rates of  
decline (16) (Figure 9A). We first applied the unmodified algorithm from Figure 8B “off-the-shelf ” to 
pretreatment Treg gene expression data, finding that this algorithm prospectively identified rapid versus 
slow C-peptide decline with AUC = 0.709; however, the specificity was low (specificity = 0.182, Figure 
9B), indicating that cutoffs for sensitivity/specificity calculations need refinement.

We then asked whether the TGS changed over the course of  ustekinumab therapy by dividing month 
9 Treg gene expression data by pretreatment (month 0) data. Biomarker discovery revealed excellent pre-
dictive models (AUC = 0.818, sensitivity = 0.909, and specificity = 0.800) that identified subjects with 
slow versus rapid C-peptide decline (Figure 9C). Evidence that the algorithm improved when both pre-
treatment and month 9 data were included suggests that subjects with sustained versus rapidly declining 
C-peptide may have differing ustekinumab-driven changes in their TGS. As with the noninterventional 
longitudinal samples, algorithms based on month 0 PBMC lysates were ineffective (data not shown).

Finally, the TGS at month 9 could also differentiate between slow and rapid C-peptide decline (Fig-
ure 9, D and E). Interestingly, at this time point, both Treg- and PBMC-derived signatures yielded good 
algorithms (AUC = 0.900 and = 0.745, respectively, Figure 9, D and E). These data suggest that the 
TGS may detect ustekinumab-mediated changes in Treg-intrinsic gene expression and in the balance 
between Tregs and Tconvs upon immunotherapy. We found some gene usage overlap with algorithms 
shown in Figure 1–8 (Figure 9F).

Discussion
Here, we build on our previous finding that Tregs from children with new-onset T1D have an altered TGS 
(10) and show that this is also true in adult new-onset and cross-sectional T1D cohorts. The altered T1D 
TGS did not appear to be determined by changes in glucose homeostasis, as analysis of  samples from sub-
jects with T2D revealed no overlap in gene expression profiles. We also showed the potential of  TGS mon-
itoring as a biomarker of  disease trajectory, possibly enabling patient stratification for immunotherapy and 
monitoring of  therapy outcomes. TGS measurement is simple, requires very small amounts of  blood, and 
integrates multiple aspects of  Treg biology that would be difficult to quantify in individual assays.

Our biomarker discovery approach utilized a leave-one-out cross-validation approach to identify algo-
rithms with high AUCs, sensitivity, and specificity for each comparison of  interest, with the resulting algo-
rithms typically only including a subset of  the 37 quantified transcripts. Comparisons between different 
algorithms revealed interesting trends in transcript utilization in samples of  sorted Tregs versus PBMCs. 

Figure 6. Altered Treg gene signature in T2D compared with T1D and healthy controls. The Treg gene signature 
was measured in sorted CD25hiCD127lo Tregs and PBMCs from the indicated age- and sex-matched cohorts using 
the nCounter SPRINT system. For Tregs: T2D, n = 29; T1D, n = 7; and healthy controls (HC), n = 9. For PBMCs: T2D, 
n = 33; T1D, n = 10; and HCs, n = 9. Shown is a principal component analysis representing expression of all 37 genes 
by sample group in (A) Tregs or (B) PBMCs. 95% confidence intervals are overlaid as ellipses. T1D, type 1 diabetes; 
T2D, type 2 diabetes.
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For example, analysis of  gene expression in sorted Tregs revealed recurring cell surface receptors and cell 
signaling molecules, suggesting that T1D Tregs have intrinsic differences in their capability to interpret 
and transmit molecular signals. In contrast, FOXP3 was one of  the most differentially expressed genes in 
PBMC-based algorithms, suggesting that these samples detect changes in Treg to Tconv ratios. This pos-
sibility is supported by the finding that FOXP3 was not present in algorithms derived from sorted Tregs, 
samples in which differential ratios between Treg to Tconv are eliminated.

Figure 7. Treg gene signature algorithms differentiate type 1 or type 2 diabetes and healthy controls. PBMC and Treg lysates from the indicated 
type 1 diabetes (T1D) or type 2 diabetes (T2D) cohorts were run on a nCounter SPRINT system together with age- and sex-matched healthy control 
(HC) samples. (A) Biomarker scores and performance when the algorithm from Figure 1B was applied to T1D and HC Treg data. (B and C) Biomark-
er scores and details (as described in Figure 1) of the best biomarker algorithm differentiating between Tregs from (B) T1D or (C) HCs and T2D 
samples. (D) Biomarker scores and performance when the algorithm from Figure 3B was applied to T1D and HC PBMC data. (E and F) Biomarker 
scores and details (as described in Figures 1 and 3) of the best biomarker algorithm differentiating between (E) T1D or (F) control and T2D samples 
in PBMCs. Horizontal lines represent means, with SD represented by error bars; dashed horizontal lines represent cutoffs for sensitivity and 
specificity calculations. (G and H) Summary of gene usage in each (G) Treg- or (H) PBMC-based algorithm described in A–F. Each of the 37 mRNAs 
measured is listed; gray and white squares indicate genes that were or were not present in the best-performing algorithm, respectively.
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Despite small sample sizes, we found that the TGS may be a novel approach to the long-standing challenge 
of predicting and measuring T1D disease trajectory and intervention effects on the immunoregulatory balance. 
Specifically, application of a single TGS algorithm in two independent cohorts was able to identify the majority 
of new-onset T1D subjects whose C-peptide was likely to decline rapidly. Interestingly, preexisting changes 
in Tregs seemed to correlate with future disease trajectory after ustekinumab treatment. These findings may 
indicate that a Treg-specific defect, instead of an immunoregulatory imbalance, dictates future disease course. 
Our data also suggest possible differential ustekinumab-mediated intrinsic effects on Tregs and the immuno-
regulatory balance in subjects with rapid versus slow C-peptide decline. Overall these data indicate that further 
testing of TGS-based algorithms in larger cohorts is warranted.

To date, only two other studies have reported prognostic biomarkers after T1D onset. Hessner and col-
leagues measured changes in PBMC gene expression upon culture in T1D plasma (17), finding that patients 
with a higher inflammatory signature at baseline had slower C-peptide decline in response to IL-1RA in 
the AIDA trial (NCT00711503). Similarly, Linsley et al. employed whole blood RNA-sequencing to find 
an increased T cell signature early after rituximab treatment (NCT00279305) in patients with rapid C-pep-
tide decline after 1 year (18). Compared with these large “omic” based approaches, nanoString-based TGS 

Figure 8. The Treg gene signature as a predictive biomarker of C-peptide decline. (A) C-peptide was quantified (2h 
AUC MMTT) in new-onset T1D patients in the placebo arms of the T1DAL and START clinical trials (see CONSORT 
flow diagrams in Supplemental Figures 1 and 2) at baseline (M0), 6 months (M6), and 24 months (M24). The absolute 
change in C-peptide from M0 to M24 was calculated, and subjects were divided into those with slow (n = 9), moderate 
(n = 8), or rapid (n = 7) decline based on terciles. (B and C). Tregs (CD4+CD25hiCD127lo) were sorted from cryopreserved 
PBMCs isolated from these subjects at baseline (M0), and the TGS was measured. (B) Biomarker score and details 
(as described in Figures 1 and 3) of the best algorithm predicting future rapid, slow, or moderate C-peptide decline. 
Horizontal lines represent means, with SD represented by error bars; dashed horizontal lines represent cutoffs for 
sensitivity and specificity calculations. (C) Expression of the indicated genes plotted by rate of C-peptide decline 
group, with 1-way ANOVA with Tukey’s multiple comparisons test (P ≤ 0.05, but data not significantly different).

https://doi.org/10.1172/jci.insight.123879
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measurement requires very few cells (<10,000) and minimal processing, making it easier to test in validation 
studies and more clinically feasible. As our understanding of T1D evolves from a linear to a relapsing-remit-
ting autoimmunity model (19), it will be of interest to continue measuring the TGS prospectively over time, 
including before disease diagnosis, to determine if  it may enable real-time evaluation of autoimmune activity.

In conclusion, these findings suggest that measuring TGSs could be a step toward a biomarker of  
immune status in T1D. Future application of  our findings across multiple studies, together with develop-
ment of  a cross-platform and cross-chemistry standardization workflow, may lead to the development of  
“universal” algorithms that could be applied to identify rapid versus slow progressors, monitor T1D over 
time, and/or select subjects likely to respond to immunotherapy.

Figure 9. The Treg gene signature as a predictive biomarker of C-peptide decline in T1D subjects treated with 
ustekinumab. Adult new-onset T1D patients were treated with ustekinumab, as outlined in the CONSORT flow 
diagram in Supplemental Figure 3. (A) C-peptide was quantified (2h AUC MMTT) at baseline (M0), 1 month (M1), 
and 12 months (M12), and absolute change in C-peptide from M0 to M12 was calculated. Subjects were divided 
into those with slow (n = 11) or rapid (n = 5) decline based on the absolute decline at M12, with slow subjects 
defined as those who lost less than 0.3 pmol C-peptide/year. (B–E) The TGS was measured in sorted CD25hiCD-
127lo Tregs or PBMCs from M0 and M9 samples. (B) Test details when the algorithm from Figure 8B was applied 
to M0 Treg data. (C) Treg-based algorithm and biomarker scores for slow versus rapid C-peptide decline using 
relative TGS data (M9/M0 prior to log2 transformation). (D) Treg- and (E) PBMC-based algorithm and biomarker 
scores using M9 TGS expression data. Horizontal lines in C–E represent means, with SD represented by error 
bars; dashed horizontal lines represent cutoffs for sensitivity and specificity calculations. (F) Summary of gene 
usage in C-peptide decline algorithms described in B–E.
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Methods
Sample collection and cell isolation. Peripheral blood from each cohort was obtained and cryopreserved as 
PBMCs (Supplemental Tables 1–5; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.123879DS1). Upon thawing, a proportion of  each sample was used to isolate 
Tregs (sorted as CD4+CD25hiCD127lo cells, antibody information in Supplemental Tables 6 and 7). Sorted 
Tregs and PBMCs were both lysed in RLT lysis buffer (Qiagen) at 3,500–5,000 cells/μl.

nanoString analysis. mRNA expression was measured in 2 μl Treg/PBMC lysates with a custom nCounter 
reporter probe set on nanoString nCounter FLEX or SPRINT systems. Sample quality was assessed by car-
tridge-specific normalization factors and positive control linearity. Gene expression data were normalized in 
four steps: (a) multiplication by sample’s normalization factor (geometric mean of  positive controls divided 
by median); (b) total sum normalization equaling 5000 counts; (c) log2 transformation; and (d) ComBat 
batch correction (20). Each cohort or group of  PBMCs or Tregs was batch corrected separately.

Statistics. Analyses were performed using R (21) and GraphPad Prism V8. Biomarker discovery anal-
ysis included 31 TGS genes (10) plus 6 genes differentially expressed between HCs and people with T1D. 
Differential expression was assessed using LiMMa (22) with P value threshold of  0.1. Binary classifiers 
were built using logistic or elastic net regression (23), with α = 0.65 (10) or α = 0.9. Where genotypes were 
available, the number of  disease variant alleles for each patient (either for a single SNP or all 8 SNPs tested) 
was included in the analysis as a covariate. Leave-one-out cross-validation was used to obtain performance 
estimates (AUC, sensitivity, and specificity). For each comparison, the best algorithm was selected on the 
basis of  the highest AUC. To define sensitivity (true positive) and specificity (true negative), the definition 
of  the cutoff  for samples falling into one group versus another was set between 0.25 and 0.75 and is indicat-
ed by a dotted line on each biomarker score graph.

Comparison of  two groups was performed by unpaired 2-tailed t test (referenced in text, data not 
shown), and comparison of  multiple groups was performed by 1-way ANOVA with Tukey’s multiple 
comparisons test (Figure 8C). A P value of  0.05 was considered significant (data in Figure 8C were not 
significantly different). Statistical tests were run using GraphPad Prism V8.

Study approval. Protocols were approved by the Clinical Research Ethics Boards of  the UBC and Ben-
aroya Research Institute. Protocols for each specific clinical trial were approved under the auspices of  
UST1D (NCT02117765), START (NCT00515099, ref. 24), and T1DAL (NCT00965458, ref. 6). Consort 
flow diagrams for the respective trials are shown in Supplemental Figures 1–3.
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