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Introduction
Genome-wide gene expression analysis has revolutionized biomedical research by providing a new level of  
understanding of  human biology and by highlighting the molecular complexity of  individual variability (1). 
The next step toward the goals of  precision medicine is to decipher the molecular mechanisms determining 
the heterogeneity of  multifactorial clinical conditions and to identify the best diagnostic and therapeutic 
targets to anticipate and prevent disease progression (2). Chronic inflammation and fibrosis are hallmarks 
of  dysfunctional tissue repair leading to irreversible organ dysfunction, a process well exemplified by the 
progression of  chronic kidney disease (3–6). Our previous studies in a mouse ischemia/reperfusion model 
demonstrated that the progression from acute kidney injury to fibrosis and irreversible damage follows a 
transcriptional program over months (7). The characterization of  similar mechanisms in humans is ham-
pered by the limited access to human tissue for time-course analyses and by the challenges related to the high 
variability of  human biology and pathology (1, 8, 9). Despite additional elements of  complexity specific to 

BACKGROUND. The molecular understanding of the progression from acute to chronic organ injury 
is limited. Ischemia/reperfusion injury (IRI) triggered during kidney transplantation can contribute 
to progressive allograft dysfunction.

METHODS. Protocol biopsies (n = 163) were obtained from 42 kidney allografts at 4 time points after 
transplantation. RNA sequencing–mediated (RNA-seq–mediated) transcriptional profiling and 
machine learning computational approaches were employed to analyze the molecular responses to 
IRI and to identify shared and divergent transcriptional trajectories associated with distinct clinical 
outcomes. The data were compared with the response to IRI in a mouse model of the acute to 
chronic kidney injury transition.

RESULTS. In the first hours after reperfusion, all patients exhibited a similar transcriptional 
program under the control of immediate-early response genes. In the following months, we 
identified 2 main transcriptional trajectories leading to kidney recovery or to sustained injury with 
associated fibrosis and renal dysfunction. The molecular map generated by this computational 
approach highlighted early markers of kidney disease progression and delineated transcriptional 
programs associated with the transition to chronic injury. The characterization of a similar process 
in a mouse IRI model extended the relevance of our findings beyond transplantation.

CONCLUSIONS. The integration of multiple transcriptomes from serial biopsies with advanced 
computational algorithms overcame the analytical hurdles related to variability between individuals 
and identified shared transcriptional elements of kidney disease progression in humans, which 
may prove as useful predictors of disease progression following kidney transplantation and kidney 
injury. This generally applicable approach opens the way for an unbiased analysis of human disease 
progression.
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allograft transplantation, renal transplants offer a unique opportunity to study the response to tissue injury in 
humans. Every organ transplantation begins with ischemia/reperfusion injury (IRI) in well-defined condi-
tions at the time of  surgery, and protocol biopsies — performed in many transplant centers — provide access 
to renal tissue over time. The recent advances in computational biology offer new opportunities to analyze 
large datasets (10). Machine learning techniques originally developed to analyze single-cell gene expression 
are particularly effective in identifying similar transcriptomes in heterogeneous tissues and predicting tran-
scriptional changes in intermediates in the transition between distinct biological states (11–14). The same 
computational approach might resolve the heterogeneity of  clinical conditions with an unprecedented accu-
racy and facilitate the discovery of  molecular mechanisms determining disease progression.

Results
Kidney allograft transcriptome variability across individuals and time. We evaluated the transcriptome of  163 
protocol biopsy samples from 42 kidney transplant recipients at 4 time points: before implantation (PRE), 
shortly after the restoration of  blood flow in the graft (POST), and 3 and 12 months after transplanta-
tion. The clinical characteristics of  the study population are presented in Table 1. The gene expression 
correlation analysis including the most variable genes in the whole dataset highlighted clusters of  genes 
involved in a variety of  biological processes from the immediate-early response after injury to organ 
fibrosis, with genes related to fibrosis and adaptive immunity forming a distinct cluster of  highly cor-
related genes (Figure 1A and Supplemental Figure 1A; supplemental material available online with this 

Table 1. Clinical characteristics of the study population

Donor type (LD/DBD/DCD) (%) 9/60/31
Donor age (years) 47.8 ± 14.9
Donor sex (male/female/unknown) (%) 45/53/2
Donor creatinine (mg/dl) 0.75 ± 0.24
Recipient age (years) 52.3 ± 13.0
Recipient sex (male/female) 64/36
Recipient end-stage renal disease diagnosis (%)
Diabetes 5
Hypertension 14
Glomerulonephritis/interstitial nephritis 31
Congenital/polycystic kidney disease 21
Other 12
Undefined 17
Previous renal transplant (%) 7
Cold ischemia time (h) 12.2 ± 5.3
Delayed graft function (%) 14
HLA-mismatches (mean) 2.9/6
Pretransplant HLA sensitization 14
Histology of the kidney at baseline (PRE), according to Banff criteria
cg (0/1/>1) (%) 100/0/0
ci (0/1/>1) (%) 63/29/8
ct (0/1/>1) (%) 34/66/0
cv (0/1/>1) (%) 82/11/3
ATN score (0/1/>1) (%) 3/19/16
% sclerotic glomeruli 7.7
Induction therapy
Anti-CD25 therapy (%) 36
Maintenance immunosuppression
TAC-MMF-CS (%) 100

LD, living donor; DBD, donation after brain death; DCD, donation after cardiac death. Banff criteria: cg, chronic 
glomerular lesions; ci, chronic interstitial lesions; ct, chronic tubular lesions; cv, chronic vascular lesions. IFTA, 
interstitial fibrosis and tubular atrophy; ATN, acute tubular necrosis; TAC, tacrolimus; MMF, mycophenolate mofetil; 
CS, corticosteroids.
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article; https://doi.org/10.1172/jci.insight.123151DS1). Dimension reduction analysis by t-distributed 
stochastic neighbor embedding (t-SNE) differentiated early (PRE and POST) and late phases (3 and 12 
months, Figure 1B). At either the early or late phase, an individual’s biopsies tended to cluster together 
(Supplemental Figure 1, B and C). The predominant role of  interindividual variability was confirmed by 
the gene expression variance decomposition analysis in linear mixed models (LMMs): 21% of  the total 
variance in gene expression reflected variability among the patient pool, while 9% of  the total variance 
was attributed to the time of  tissue sampling (Figure 1C). Genes displaying a high level of  variability 
among individuals were associated with fundamental cell biology (transcription, RNA processing, mito-
chondrial function) and included genes previously associated with high interindividual variability (such 
as RPL9 and GSTM1) and with sex-biased expression (such as XIST and DDX3Y) (1). Thus, despite the 
inherent variability related to the clinical setting and analysis of  limited tissue samples in the context 
of  a biological process not necessarily homogenously distributed in the tissue, the substantial level of  
intraindividual transcriptional constancy in repetitive biopsies from the same kidney indicated that the 
transcriptomic profiles were reproducible, reflecting biological differences among patients.

Early transcriptional response to ischemia/reperfusion. The gene expression variance decomposition high-
lighted a small number of  genes characterized by a low level of  variability among patients but a high level 
of  variability across time points (blue dots in Figure 1C). This subset of  genes was primarily involved in the 
immediate injury response (Supplemental Figure 2), suggesting a low level of  interindividual heterogeneity 
in the initial response to ischemia (primarily triggered at the time point of  tissue reperfusion) (15). The 
reperfusion time (i.e., the time between restoration of  blood flow and POST biopsy collection) was deter-
mined by the duration of  the surgical procedure and was therefore variable among patients (range 26–88 
minutes, Supplemental Figure 3A). We considered this unsynchronized dataset as a time-course analysis 
of  a biological transition, with each POST transcriptome representing an intermediate state along this pro-
cess. Because of  the analogy of  this experimental setting with studies on cell state transitions investigated 
with single-cell transcription analysis, we used a similar computational approach to order PRE and POST 
biopsies on a pseudotime trajectory (Figure 2A) (13, 16).

PRE and POST transcriptomes were correctly separated. PRE samples were classified in 2 groups, reflecting 
the heterogeneity of the grafts before implantation. Differences in the percentages of kidney grafts obtained 
from donation after cardiac death (DCD) and in the expression of TIMP1 were consistent with a different level 
of injury prior to reperfusion (Supplemental Figures 3, B–D). In contrast, all POST biopsies were ordered along 
the same transcriptional trajectory (Figure 2A). Consistent with the gene expression variance decomposition, 
the invariant sharp upregulation of the early response genes in all POST samples (Supplemental Figure 3E) and 
the absence of branching along the pseudotime axis suggested that all patients underwent a similar transcrip-
tional program in the first hours after reperfusion. The type of donation was associated with the progression 

Figure 1. The kidney allograft transcriptome across individuals and time. (A) Gene expression correlation analysis including the 500 most variable genes in 
RNA-seq data (RPKM values) from 163 protocol biopsies obtained from 42 kidney allografts at 4 time points. Clusters of interest are highlighted in yellow (#1 renal 
physiology, #2 response to kidney injury, #3 fibrosis, #4 adaptive immunity; gene ontology analysis is presented in Supplemental Figure 1A). (B) T-distributed sto-
chastic neighbor embedding (t-SNE) analysis on RNA-seq data, including all samples and showing the separation of the transcriptomes in 2 major clusters: early 
phase (green; PRE, before implantation; POST, after implantation), late phase (blue; 3M, 3 months after transplantation; 12M, 12 months after transplantation). 
(C) Gene expression variance decomposition analysis in linear mixed models showing the contribution of individual and time to gene expression variation. Genes 
showing an individual-driven variance are shown in red; genes with a time-drive variance are shown in blue, and some relevant examples are specified.
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along the trajectory: all samples obtained from living donation (LD) were classified in the first third of the tra-
jectory, whereas samples from DCD were enriched in the final third (Figure 2A and Supplemental Figure 3F). 
Moreover, we found a significant correlation between the reperfusion time and the pseudotime (Supplemental 
Figure 3G), whereas the pseudotime did not correlate with cold ischemia time (Supplemental Figure 3H). Taken 
together, the initial transcriptional response to ischemia/reperfusion appears uniform among individuals, but the 
response was much less pronounced after LD. In DCD, the first response to ischemia is likely to start earlier (17); 
therefore the process was more advanced at the time the reperfusion biopsy was obtained.

The integrated analysis of  the transcriptional changes over pseudotime displayed a dynamic gene 
expression regulation: the first cluster of  genes (Figure 2B, Supplemental Figure 3I, and Supplemental 
Table 1) was characterized by a rapid upregulation of  many immediate-early genes in stress responses 
(e.g., FOS, JUN, and EGR1 in Supplemental Figure 3J). This initial response was swiftly followed by a 
second wave of  genes showing marked upregulation, including the transcriptional regulators SOX9 and 
KLF5 (Figure 2B and Supplemental Figure 3, I and K) (18, 19). The regulation of  other genes in the dataset 
can be interrogated online (https://lianglabusc.shinyapps.io/shinyapp). To identify the critical elements in 
the regulation of  this coordinated process, we performed a network analysis, based on a modified Mogrify 
algorithm (12), which highlighted a major role for the transcription factors FOS in the context of  a complex 
transcriptional network (Figure 2C, Supplemental Figure 4, and Supplemental Table 2).

Since data confirmation in human samples was hampered by limited tissue availability, we validated 
the findings in extensive data sets recently published by our group examining a mouse model of  IRI (7). 
The comparison of  differentially expressed genes in POST samples with homologous genes upregulated 2 
hours after IRI in the mouse model revealed a highly significant overlap across the species (Figure 2D and 

Figure 2. Early transcriptional response to ischemia/reperfusion. (A and B) Pseudotime analysis including samples collected before (PRE, n = 38) and 
after implantation (POST, n = 39). (A) Sample state ordering in the reduced dimensional space, as determined by the Monocle algorithm. PRE samples 
were classified in 2 groups and are shown in cyan; POST samples ordered along a pseudotime line from right to left and are shown in red. Among the POST 
samples, the circles mark samples from living donors (LD), and the black squares mark samples from donors after cardiac death (DCD). (B) Cluster analysis 
of representative genes differentially expressed along the pseudotime: samples are aligned from left to right according to the order shown in A. Genes are 
vertically aligned and classified in 2 clusters. The colors indicate the relative expression of the genes (log10 scale). The complete list of genes is presented 
in Supplemental Figure 2 and Supplemental Table 1. (C) Influence score for the top 14 transcription factors as determined in the network analysis based 
on a modified Mogrify algorithm. (D) Venn diagram including genes differentially expressed in POST compared with PRE (human) and homologous mouse 
genes differentially expressed 2 hours after IRI compared with control. Significance of enrichment was determined by hypergeometric test. (E and F) Reads 
per kilobase per million mapped reads (RPKM) values along the early time-course analysis after IRI in mice (n = 3 for each time point). (G) Venn diagram 
including genes differentially expressed in POST compared with PRE in the human kidney and in the liver. Significance of enrichment was determined by 
hypergeometric test. (H) Cluster analysis of representative genes differentially expressed along the pseudotime in the liver.
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Supplemental Table 3). Moreover, the time-course analysis in mice confirmed the same pattern of  regula-
tion of  homologous genes. Genes classified in the first wave in humans reached the maximal expression 
level 2 hours after reperfusion in the mouse model (e.g., Fos; Figure 2E), whereas the expression level of  
genes regulated in a second wave continued to rise at 4 hours (e.g., Socs3; Figure 2F).

The general applicability of  this approach was investigated by comparing the early transcriptional 
response to ischemia/reperfusion across organs. We took advantage of  RNA-seq data from liver transplants 
where liver biopsies were obtained before and after reperfusion (20). The comparison of  the differentially 
expressed genes in PRE and POST samples in both organs highlighted a significant overlap (Figure 2G and 
Supplemental Table 4). The liver dataset consisted of  only 15 samples for each time point, and the reperfu-
sion time was less variable (about 2 hours). Nevertheless, pseudotime analysis delineated a biphasic tran-
scriptional program (Supplemental Figure 5 and Supplemental Table 5): the first wave included the rapid 
upregulation of  expression of  mRNAs encoding transcriptional regulators governing the immediate-early 
responses. The overlap with the corresponding kidney dataset was less consistent in the second wave (12% 
vs. 37%, P < 0.0001), which was more organ specific, identifying transcripts encoding signaling factors 
previously characterized as regulators of  liver injury and regeneration (e.g., CCL7, FGF19) (21, 22) (Figure 
2H). Thus, as with previous experimental studies (23), the general pattern of  transcriptional responses to 
ischemia/reperfusion was similar across organs: a highly conserved immediate-early response that likely 
initiates organ-specific mechanisms of  injury and repair. More generally, an unsupervised computational 
approach generated a map of  the early transcriptional response to IRI in a real clinical condition reminis-
cent of  regulated transcriptional networks previously investigated in cell culture (24).

Transcriptional trajectories of  kidney injury progression. To identify groups of  patients with a similar tran-
scriptional profile at later stages after renal transplant, we first generated a minimum-spanning tree, based 
on global gene expression profiles at 3 and 12 months. The last 10 POST samples along the pseudotime 
presented in Figure 2A were included as a control to benchmark the starting point of  the late phase. We 
identified densely connected networks of  samples (communities) by using random walks as implemented 
by the Walktrap community finding algorithm (25). Among the major communities identified with this 
approach, community A presented a transcriptional signature related to kidney injury, fibrosis, and chronic 
inflammation (Figures 3, A and B, and Supplemental Table 6). In analogy to the analytic approach applied 
for the early response, we considered the progression to fibrosis as a transitional process from acute injury 
(POST) to fibrosis (community A). We performed a pseudotime analysis including all POST, 3-month 
(3M), and 12M samples to cover this transition. The computational model correctly positioned the POST 
samples at one end of  the pseudotime line (Figure 3C). The late-phase samples separated into 2 branches, 
with all transcriptomes previously classified in the community A forming the latest stage of  transition on 
the longer branch and the samples previously classified in community B separated among the 2 branches 
(Figure 3D). In 86% of  the patients, both the 3- and 12-month biopsies were positioned on the same branch 
or moved to the branch depicting the progression to fibrosis over time, whereas only 14% of  the cases 
initially classified along the progression to fibrosis at 3 months were positioned on the opposite branch at 
12 months. Early response genes displayed distinct characteristics in the long-term: a subset of  genes (e.g., 
ATF3, IER2, FOSB) were restricted to the early response, while other genes underwent a secondary increase 
at late stages of  chronic injury (e.g., SOX9, GDF15; Supplemental Figure 6). Of  particular interest was the 
late activation of  HIF1A, consistent with an oxygen supply-demand mismatch in the fibrotic kidney (26), 
and JUN, a gene associated with the pathogenesis of  organ fibrosis (Supplemental Figure 6) (27).

To specifically characterize the sequence of  transcriptional events during the transition to chronic kid-
ney injury, we performed a pseudotime analysis including only samples collected at 3 and 12 months and 
based on genes differentially expressed in communities A and B (Figure 3E). Among the most significantly 
differentially expressed genes, we found genes involved in cell death (e.g., DAD1, ANXA5) and complement 
regulation (e.g., CD59, SERPING1), which progressively increased with pseudotime (28). The upregulation 
of  genes related to fibrosis (e.g., COL1A2, DCN, MMP2; Figure 3, F and G) was a late event, coincident 
with the activation of  genes regulating lymphocyte trafficking (e.g., CCL19, CCL21). Genes involved in the 
response to acute kidney injury (e.g., HAVCR1, LCN2) and innate immunity (e.g., TRAF6, TLR3) were 
upregulated earlier (Figure 3, F and G). The cluster of  genes downregulated with pseudotime included 
mostly mitochondrial genes (Figure 3F; further characterized below). The complete list of  genes and their 
distribution in each cluster is presented in Supplemental Tables 7–8. All differentially expressed genes along 
this pseudotime can be interrogated online (https://lianglabusc.shinyapps.io/shinyapp).
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Figure 3. Transcriptional trajectory of transition from acute to chronic kidney injury. (A) Minimum spanning tree of kidney biopsy transcriptomes 
at 3 (3M, dark blue, n = 38) and 12 (12M, light blue, n = 39) months after transplantation, and 10 samples collected after implantation (POST, green). 
Community A (marked in blue) separated from the rest of the study population (community B, in red). (B) Violin plots showing mRNA per sample 
(RPS) values of representative genes selected as markers for kidney injury (HAVCR1, VCAN), fibrosis (COL1A1), and chronic inflammation (CCL19). 
Adjusted P values are reported (Benjamini-Hochberg). (C and D) Pseudotime analysis including samples collected after implantation (POST) and 
3 and 12 months after transplantation. Sample state ordering in the reduced dimensional space is shown. The colors indicate the time point of 
biopsy collection in C and the classification in communities A or B in D. (E) Similar analysis including only 3- and 12-month samples based on genes 
differentially expressed in communities A and B. The color of the dots indicate the progression along the pseudotime, as indicated. (F) Cluster anal-
ysis of the top 2,000 genes differentially expressed along the pseudotime shown in E. Genes are vertically aligned and classified in 4 clusters (the 
complete list of genes is reported in the Supplemental Table 8). (G) Representative example of 1 gene expressed early (HAVCR1) and late (MMP2) in 
the transition to chronic injury. The colors indicate the pseudotime, as indicated. The numbers indicate the cluster, according to F. (H) Glomerular 
filtration rate at 12 months, estimated by CKD-EPI equation (eGFR) in communities A and B. P value was calculated by Mann-Whitney U test. (I) 
Histogram of the degree of fibrosis 12 months after transplantation, quantified by ci-score on conventional histology. The percentage of patients 
in each fibrosis category in communities A and B is reported. The groups were compared by χ2 test. (J) Venn diagram including genes differentially 
expressed in community A compared with community B (human) and homologous mouse genes differentially expressed 12 months after IRI com-
pared with control. Significance of enrichment was determined by hypergeometric test. (K and L) RPKM values along the late time-course analysis 
after IRI in mice (n = 3 for each time point).
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The functional relevance of  this computational model was confirmed by reduced renal function, as 
determined by estimated glomerular filtration rate (eGFR), and higher levels of  fibrosis, as quantified by the 
ci-score according to Banff  classification on conventional histology, observed 1 year after transplantation in 
community A patients (Figure 3, H and I). However, the separation in communities A and B was not just 
reflecting fibrosis, with 60% of the patients in community A displaying low levels of  fibrosis at 12 months 
(ci-score 0 or 1; Figure 3I). Notably, eGFR and ci-score were similar among the 2 groups 3 months after 
transplantation. Furthermore, drawing on an analogy to the interspecies validation of  the early response, we 
compared genes differentially expressed in communities A and B with homologous mouse genes upregulated 
12 months after IRI (Figure 3J). Among the conserved genes across species in the late-phase response, we 
identified genes associated with fibrosis (e.g., COL1A1, MMP2), adaptive immunity (e.g., CD2, IL2RG), and 
vascular biology (e.g., VCAM1, VWF) (Supplemental Table 9). Human-specific genes were mostly related to 
fundamental cellular functions indicating an additional human-specific complexity in the response. No evi-
dence was observed for a specific regulation of  genes related to adaptive immunity in humans, indicating that 
alloreactivity — exclusively present in human dataset — was not a predominant element in our computation-
al model. Similar genes were upregulated in the late phase of  the mouse as were observed in the pseudotime 
analysis of  human samples (e.g., the early expression of  Havcr1 and the late upregulation of  Ccl19; Figure 3, K 
and L). Together, these outcomes demonstrate that the analysis identified transcriptional trajectories reflecting 
dynamic biological processes associated with a progression to chronic allograft dysfunction.

Early discrimination of  kidney injury progression. To identify early factors determining the alternative fate 
toward recovery or progression to fibrosis, we compared the transcriptomes classified right after the branch-
ing point of  the pseudotime trajectories (Figure 4A). The first major difference among the groups was 
related to mitochondrial homeostasis: the expression of  mitochondrial genes in group 1 was similar to 
normal renal tissue (defined by PRE samples obtained from living donors), but it was significantly lower 
in group 2 and decreased further in group 3 (Figure 4B). Additional evidence for a critical role of  mito-
chondrial dysfunction and impaired ATP production in association with the separation of  the 2 trajectories 
was provided by an analysis of  key regulators of  mitochondrial homeostasis (e.g. NRF1, PPARG, DNM1L) 
and glycolysis (e.g. PARP1) in the kidney (Figure 4C) (29, 30). Conversely, the expression level of  genes 
associated with innate immunity and extracellular matrix organization was higher in group 2, with the 
key regulator of  kidney fibrosis MMP7 showing the strongest upregulation (Figure 4D and Supplemental 
Table 10) (31). Among the genes displaying the highest influence score in the network analysis based on the 
comparison between groups 1 and 2 were TP53 and EP300 (Figure 4E and Supplemental Table 11). EP300 
was upregulated very early, according to the pseudotime analysis presented in Figure 3, E and F, and high-
lighted in Figure 4F. In line with the network analysis, the 33 genes most highly correlated with EP300 were 
sufficient for a classification of  the transcriptomes in groups 1 or 2 with a sensitivity and a specificity >90%  
(P < 0.0001; Figure 4G and Supplemental Table 12). Interestingly, binding sites for EP300 were recently 
associated with renal function in epigenome-wide association studies (32).

Discussion
We investigated a complex clinical condition applying an unsupervised computational strategy, which inte-
grates genome-wide expression analysis in heterogeneous groups of  patients to identify and characterize 
shared trajectories of  disease progression. One main innovation of  this study is the application of  compu-
tational approaches originally developed to characterize single-cell transcriptomics in heterogeneous tissues, 
which proved to be powerful tools to recognize and classify single patient transcriptomes in heterogeneous 
populations. The application of  manifold learning-based methods is justified only if  the data vary “smoothly” 
in the local neighborhood (33). The transcriptional transition in the first hours after reperfusion represented an 
ideal experimental setting to verify the potentially novel application of  this approach. The findings confirmed 
the manifold assumption from a computational perspective and generated data consistent with the biological 
perspective, which correlated with clinical data, detailed analyses of  a mouse IRI model, and other published 
material. Applying the same strategy to the long-term dataset also produced predictions that could be second-
arily validated. While the manifold assumption was not necessarily satisfied a priori in this analysis, the results 
confirmed the smooth variation in the transcriptional profile and biomedical expectations for the dataset.

The resulting molecular map of  the transcriptional program following ischemia/reperfusion in the 
human kidney correlated with 2 major clinical outcomes: progression to chronic kidney injury or recovery 
(Figure 4H). Many genes involved in this process have been previously characterized, serving to validate 
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the potentially novel approach, lending confidence to a first systematic insight into the molecular mecha-
nisms of  individual human kidney disease progression. Genes revealed through these studies have potential 
diagnostic and therapeutic relevance. The early response to ischemia/reperfusion in the human kidney and 
liver biopsy samples identified similar waves of  transcriptional regulation to those reported in time-course 
studies in vitro (24). Moreover, we identified early markers of  disease progression, which represent poten-
tial targets to anticipate and prevent chronic kidney disease. Our data suggest the presence of  common 
mechanisms in the response to kidney injury and in the transition to chronic kidney damage, despite the 
different factors contributing to potentially different types of  kidney damage after transplantation in a het-
erogenous population, including the initial IRI, rejection episodes, and drug toxicity. Thus, the molecular 
process characterized here reflects the fundamental response of  the kidney to injury and the transition to 
organ fibrosis in humans. These fundamental processes might have a prognostic relevance and need to be 
considered for any further application of  diagnostic strategies based on transcriptional analyses (including 
single-cell transcriptomics). However, this study was not powered to predict clinical outcome. Previous 
clinical studies provided evidence for the potential clinical relevance of  early transcriptional analysis after 
kidney transplantation to predict outcome (34); our detailed characterization of  the transcriptional pro-
gram associated with distinct clinical outcomes represents a blueprint to identify genes of  interest for future 
clinical trials, including a larger cohort of  patients and a longer follow-up.

The comparison with the mouse model not only validated the validity of  the RNA-seq data in mod-
eling human biology. The strong concordance with the mouse IRI datasets indicates that many of  the 
injury-invoked gene regulatory responses are conserved across species, and the overlap highlights those 
gene sets that are likely best-suited for interventional mouse-directed human disease modeling. Moreover, 
the presence of  common elements in a nontransplant model expands the relevance of  the human model 
beyond transplantation, indicating that the molecular processes described here are mostly independent 
of  the peculiarities related to transplantation. However, multiple pharmacological effects of  immunosup-
pressive drugs might influence the transcriptional response to kidney injury (35) and should be considered 
before the presented data can be generalized to a nontransplant setting.

Figure 4. Early markers of transition to kidney fibrosis. (A) Schematic representation of the definition of groups along the divergent branches of the 
pseudotime analysis presented in Figure 3C. (B–E) Box plots of RPKM values of the indicated genes in the group defined in A and PRE biopsies obtained 
from living donor (LD), as a surrogate of normal renal tissue. The groups were compared by Mann-Whitney U test. (F) Expression profile of EP300 along the 
pseudotime presented in Figure 3E in comparison with other genes, reflecting the very early upregulation of EP300 along the transition to chronic kidney 
injury. (G) Samples cluster analysis based on the 33 genes highly correlated with EP300 in groups 1 and 2 (Pearson’s correlation > 0.88). The division of the 
samples in 2 clusters is indicated by the blue (group 1) and green (group 2) bars on the left. (H) Conceptual summary of the study highlighting the common 
early injury response after ischemia/reperfusion followed by a multifactorial transition phase with divergent long-term outcomes: recovery versus the 
initiation of a chronic injury signature. Some of the critical genes involved in each phase are shown.
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Chronic, progressive diseases substantially contribute to global morbidity and mortality (36). Our com-
putational approach can be applied to other organs and clinical conditions (as shown in the liver), and it 
overcomes major limitations related to the need for repetitive tissue analyses over time to understand dis-
ease progression. In consideration of  the level of  accuracy obtained here even with relatively small numbers 
of  samples, our approach might represent a powerful strategy to advance the molecular understanding of  
progressive clinical conditions.

Methods
Study design. We performed a genome-wide gene expression profile by RNA-seq in kidney transplant recip-
ients, randomly selected among patients with a full set of  4 available biopsies from a database at the Uni-
versity of  Leuven. Renal biopsies were performed at the University Hospitals of  Leuven at following time 
points: before implantation (kidney flushed and stored on ice), after reperfusion (at the end of  the surgical 
procedure), and 3 months and 12 months after transplantation (protocol biopsies). Additional biopsies 
performed in the same patients for a clinical indication were not considered for this study. For histologi-
cal evaluation, kidney sections were stained with H&E, periodic acid-Schiff  (PAS), and silver methenam-
ine (Jones). All biopsies were centrally scored by pathologists dedicated to transplant pathology following 
the same standard procedures. The severity of  chronic histological lesions was semiquantitatively scored 
according to the Banff  categories for mesangial matrix expansion (“mm”), tubular atrophy (“ct”), vascular 
intimal thickening/arteriosclerosis (“cv”), interstitial fibrosis (“ci”), arteriolar hyalinosis (“ah”), and trans-
plant glomerulopathy (“cg”). The team involved in the computational analysis was not informed about 
any clinical information until the end of  the study, when computational and clinical data were matched. 
The histological evaluation was independent of  the computational analysis, and the pathologist was not 
informed about the results of  the transcriptional analysis.

Tissue storage and RNA extraction. For each renal allograft biopsy included in this study, at least half  a 
core was immediately stored on Allprotect Tissue Reagent (Qiagen Benelux BV) and, after incubation at 
4°C for at least 24 hours and a maximum 72 hours, stored locally at –20°C, until shipment to the Labo-
ratory of  Nephrology of  the KU Leuven. We performed RNA extraction using the Allprep DNA/RNA/
miRNA Universal Kit (Qiagen Benelux BV) on a QIAcube instrument (Qiagen Benelux BV). The quantity 
(absorbance at 260 nm) and purity (ratio of  the absorbance at 230, 260, and 280 nm) of  the RNA isolat-
ed from the biopsies were measured using the NanoDrop ND-1000 spectrophotometer (Thermo Fisher 
Scientific, Life Technologies Europe BV). Before library preparation, RNA integrity was verified by high 
sensitivity RNA ScreenTape analysis (Agilent Technologies). Five samples were discarded on the basis of  
suboptimal mRNA quality.

Library preparation, RNA-seq, and data processing. Library preparation and RNA-seq were performed in 2 
batches. The first batch consisted of a pilot study with 3 patients (12 samples), and the second batch included the 
rest of the study population. To avoid biases related to batch effects, the samples included in the pilot study were 
excluded from the pseudotime analyses. The library was prepared with Clontech SMARTer technology at the 
Genome Technology Access Center of the Washington University (St. Louis, Missouri, USA). The sequencing 
was performed in the same laboratory using the HiSeq 3000 system on the Illumina platform, with a target of 30 
M reads per sample. The reads were aligned to the Ensembl top-level assembly with STAR version 2.0.4b. Gene 
counts were derived from the number of uniquely aligned unambiguous reads by Subread:featureCount version 
1.4.5. Transcript counts were produced by Sailfish version 0.6.3. Sequencing performance was assessed for total 
number of aligned reads, total number of uniquely aligned reads, genes and transcripts detected, ribosomal 
fraction, known junction saturation, and read distribution over known gene models with RSeQC version 2.3.

LMM. To examine the gene expression variation that can be explained by the variables of  interest, 
a LMM was implemented with the R package lme4. After excluding genes with a maximum RPKM 
< 0.1, RPKM values were transformed as log10(RPKM + 0.01) before being used in the LMM model. 
Gene expression was modeled by variables of  interest as random effects plus an intercept considered 
as fixed effects. In R syntax convention, the formula is: GeneExp (RPKM) = (1|Variable1) + (1|Vari-
able2) + ɛ, with 1 representing the intercept and ɛ representing the residual term. Time (PRE, POST, 3 
and 12 months) and individual were defined as random effects. Variances were estimated by restricted 
maximum likelihood (REML) estimators. Then, the variances explained by the 2 random effects were 
normalized by the total variance (sum of  each variance explained by the random effect and the residual 
variance), which were used as the x axis and y axis coordinates.
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Pseudotime analysis. All pseudotime analyses were performed using the Monocle workflow in R (13). 
First, genes with minimum RPKM greater than 0.1 and expressed in at least 40 samples were selected as 
expressed genes. RPKM values were then transformed into mRNA per sample (RPS) by Census (included 
in Monocle 2) (13). RPS was equivalent to mRNA per cell (RPC); we named it RPS since our data was bulk 
RNA-seq instead of  single-cell RNA-seq. The minimum expression level for considering a gene in Monocle 
was 0.1; a negative binomial distribution was used. The differential expression analysis in Monocle was 
based on the time point of  biopsy or on the classification in categories, as indicated in the text. Cell state 
ordering and gene expression pattern plots were generated with the codes included in the Monocle package.

Comparison of  mouse and human data. The experimental model was previously characterized (7). Briefly, 
10- to 12-week-old, 25–28g C57BL/6CN male mice, purchased from the Charles River Laboratory, were 
anesthetized with an i.p. injection of  a ketamine/xylazine (105 mg ketamine/kg; 10 mg xylazine/kg). 
Body temperature was maintained at 36.5°C–37°C throughout the procedure. The kidneys were exposed 
by a midline abdominal incision, and both renal pedicles were clamped for 21 minutes using nontraumatic 
microaneurysm clips (Roboz Surgical Instrument Co.). Restoration of  blood flow was monitored by the 
return of  normal color after removal of  the clamps. All the mice received i.p. 1 ml of  normal saline at the 
end of  the procedure. Sham-operated mice underwent the same procedure, except for clamping of  the 
pedicles. RNA was extracted from whole renal tissue with an RNeasy kit (Qiagen) and was provided to the 
USC Epigenome Center’s Data Production Core Facility for library construction and sequencing. Library 
construction was carried out using the Illumina TruSeq RNA Sample Prep kit v2 through polyA selection. 
Libraries were applied to an Illumina flow cell at a concentration of  16 pM on a version 3 flow cell and run 
on the Illumina HiSeq 2000. Final file formatting, demultiplexing, and fastq generation were carried out 
using CASAVA version 1.8.2. The sequencing data were aligned to mm10 genome assembly with STAR 
aligner. The interspecies comparison was based on orthologous genes between human and mouse. The 
orthology information was downloaded from Biomart (https://www.ensembl.org/biomart) by selecting 
human data set hg38 and adding mouse orthology information. The Genome Assembly version used were 
GRCh38.p12 for human and GRCm38.6 for mouse.

Comparison of  kidney and liver. The liver dataset was downloaded from the GEO (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE87487) and was analyzed in analogy to the kidney data (20).

Software. t-SNE, differential gene expression analysis, gene correlation analyses, the Monocle work-
flow, the community finding analysis, and the network analysis were performed with the PIVOT platform, 
developed by the Kim Lab, University of  Pennsylvania (http://kim.bio.upenn.edu/software/pivot.shtml). 
Violin plots were generated on the PIVOT platform and visualized on Plotly (https://plot.ly). Box plots 
and histograms were generated with Prism 7. Gene enrichment analyses were performed with ToppFun 
(https://toppgene.cchmc.org).

Webpage. An interactive website was developed for a convenient interrogation of  how genes of  interest 
changed along pseudotime in human kidney injury early response (PRE vs. POST) and how genes behaved 
in the long run — a pseudotime trajectory constructed from POST to 3- and 12-month samples.

Statistics. All gene expression levels were normalized and quantified by number of  reads per kilobase 
per million mapped reads (RPKM) and transformed into RPS (mRNA per sample) for pseudotime anal-
yses. Dimension reduction analysis was performed with t-SNE by Rtsne package in R. Gene correlation 
analysis and feature correlation heatmaps were performed on PIVOT (16). Differential gene expression 
analyses were performed with EdgeR (37), by applying an exact test, with an FDR < 0.05. RPKM, RPS, 
and eGFR values were compared by Mann-Whitney U tests. Categorical analyses were performed with 
Fisher’s exact or χ2 tests. Venn diagrams were generated by the R package VennDiagram, and the signif-
icance of  enrichment was calculated by hypergeometric tests. The community finding analysis was per-
formed on PIVOT (25). The network analysis was performed based on genes differentially expressed in 
PRE and POST samples. The analysis was performed in PIVOT by using the STRING protein-to-protein 
interaction database and the Regnetwork regulatory network database (12). Gene Ontology (GO) analyses 
were performed on ToppGene (38).

Study approval. The patients received a kidney transplantation at the University of  Leuven. All patients 
gave written informed consent, and the study was approved by the Ethical Review Board of  the University 
Hospitals of  Leuven (S53364 and S59572). Mouse handling and husbandry and all surgical procedures 
were performed according to guidelines issued by the IACUC at USC.
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