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Introduction
Gestational diabetes mellitus (GDM) is associated with increased risk of  type 2 diabetes (T2D) and associ-
ated cardiometabolic diseases in the offspring (1–9). In a recent substudy (n = 1,234) of  the Danish Nation-
al Birth Cohort (DNBC), we found that offspring of  women with GDM, already at the preadolescent age, 
displayed increased adiposity and associated dysmetabolic traits (10). However, the extent to which dys-
metabolic traits and increased risk of  T2D among offspring of  GDM women are due to genetic variation, 
shared environment, and/or epigenetic variation remains unclear. Considerable data support the latter 
possibility, revealing the time in utero as a sensitive period of  susceptibility linking adverse environmental 
exposure to adverse offspring health outcomes, even much later in life (11).

Epigenetic mechanisms, including DNA methylation, histone variants/modifications, chromatin-modify-
ing proteins, and noncoding RNAs, work in combination to regulate gene expression. Accumulating evidence 

Offspring of women with gestational diabetes mellitus (GDM) are at increased risk of developing 
metabolic disease, potentially mediated by epigenetic mechanisms. We recruited 608 GDM  and 
626 control offspring from the Danish National Birth Cohort, aged between 9 and 16 years. DNA 
methylation profiles were measured in peripheral blood of 93 GDM offspring and 95 controls using 
the Illumina HumanMethylation450 BeadChip. Pyrosequencing was performed for validation/
replication of putative GDM-associated, differentially methylated CpGs in additional 905 offspring 
(462 GDM, 444 control offspring). We identified 76 differentially methylated CpGs in GDM offspring 
compared with controls in the discovery cohort (FDR, P < 0.05). Adjusting for offspring BMI did 
not affect the association between methylation levels and GDM status for any of the 76 CpGs. Most 
of these epigenetic changes were due to confounding by maternal prepregnancy BMI; however, 13 
methylation changes were independently associated with maternal GDM. Three prepregnancy BMI–
associated CpGs (cg00992687 and cg09452568 of ESM1 and cg14328641 of MS4A3) were validated 
in the replication cohort, while cg09109411 (PDE6A) was found to be associated with GDM status. 
The identified methylation changes may reflect developmental programming of organ disease 
mechanisms and/or may serve as disease biomarkers.

https://doi.org/10.1172/jci.insight.122572
https://doi.org/10.1172/jci.insight.122572
https://doi.org/10.1172/jci.insight.122572


2insight.jci.org   https://doi.org/10.1172/jci.insight.122572

R E S E A R C H  A R T I C L E

suggests epigenetic dysregulation of  gene functions in early life as a link between prenatal environment and 
later metabolic disease (12–16). Indeed, previous smaller studies of  offspring of  women with GDM reported 
differential DNA methylation changes in cord blood or placenta tissue samples, using either a candidate gene 
approach (17–23) or in epigenome-wide approaches (24–26). Interestingly, the epigenome-wide association 
studies (EWAS) consistently suggested methylation changes in genes involved in metabolic pathways among 
GDM versus control offspring. Despite this, results have been generally inconclusive due to lack of  (a) statis-
tical power due to insufficient sample size, (b) consideration of  potential confounders, such as prepregnancy 
maternal BMI (mBMI), and (c) replication studies.

For environmentally mediated epigenetic variation arising in utero to be considered as potential bio-
markers for later-onset disease, it is a great strength if  they are persisting and detectable postnatally. Although 
showing some tissue specificity, DNA methylation profiles in blood often reflect epigenetic fingerprints in 
other tissues (27, 28). To this end, there is a great potential to use DNA methylation in blood as biomarkers 
to predict later disease development. In support of  this idea, studies of  blood cell DNA have showed that 
individuals who were prenatally exposed to famine during the Dutch hunger winter presented altered meth-
ylation levels 6 decades later, at several genes including IGF2, when compared with their unexposed, same-
sex siblings (13, 29). Recently, a study investigating DNA methylation in peripheral blood from adolescent 
Pima Native Americans reported genome-wide methylation differences in offspring of  mothers with T2D 
prior to pregnancy, which were not associated to prepregnancy mBMI (30). Whether pregnancies affected 
by GDM have similar long-lasting effects on the offspring epigenome remains unclear. Using a genome-wide 
discovery approach in a nested case-control subcohort (n = 188) and subsequent replication of  most promis-
ing changes in the remaining cohort (n = 905), we have identified DNA methylation in peripheral blood of  
9- to 16-year-old offspring of  GDM women relative to non-GDM controls (Figure 1).

Results
Maternal, birth, and offspring characteristics of  the DNBC GDM subcohort. Characteristics of  the study popu-
lation are outlined in Table 1. GDM mothers had a higher prepregnancy mBMI but a smaller pregnancy 
weight gain (2 kg less) than controls (P < 0.001). They were also, on average, 1 year older, more likely to be 
smokers, and among lower socio-occupational status classes compared with controls (P ≤ 0.015). Further-
more, the outcome of  pregnancies in women with GDM showed a higher proportion of  cesarean section 
delivery, shorter gestational age (GA), higher birthweight, and a shorter period of  breastfeeding when com-
paring to the controls (P < 0.001).

As previously described (10), offspring of  GDM pregnancies showed a range of  adverse metabolic 
characteristics, including increased fasting plasma glucose, insulin, and C-peptide levels; HOMA-IR; total 
body fat percentage (total BF%); BMI; and resting heart rate (HR) — as well as a decreased total muscle 
mass (Table 1).

The clinical characteristics of  the subgroup of  188 offspring included in the epigenome-wide analysis (n 
= 93 GDM and 95 control offspring) are shown in Supplemental Table 1 (supplemental material available 
online with this article; https://doi.org/10.1172/jci.insight.122572DS1). Generally, most of  the clinical 
and metabolic characteristics in the discovery subgroup were representative of  the entire cohort of  1,234 
offspring (n = 608 GDM and 626 control offspring), as well as the maternal characteristics including pre-
pregnancy mBMI (Supplemental Table 1 and Table 1).

Epigenome-wide DNA methylation analysis of  blood from GDM versus control offspring. To investigate whether 
DNA methylation in blood differed in 9- to-16-year-old GDM versus control offspring, epigenome-wide 
DNA methylation was analyzed in a subgroup of  93 GDM and 95 control offspring using the Infinium 
HumanMethylation450 BeadChip (HM450K array). In total, 425,344 probes (referred to as CpGs) on the 
HM450K array were retained for subsequent analysis.

Analysis using the removal of  unwanted variation for methylation data (RUVm) method from the 
missMethyl Bioconductor package, with a FDR less than 5% (P < 0.05), identified 76 significantly dif-
ferentially methylated CpGs between GDM offspring and controls not including any covariates (Table 
2). The methylation differences ranged from ~1%–5.2%, and the majority of  the 76 CpGs (92%) showed 
lower DNA methylation in the GDM offspring (Table 2). The genomic location of  these sites varied, with 
58 annotated to 56 unique genes, 2 of  which (cg09452568 and cg00992687) mapped to ESM1 (located in 
close proximity in exon 3) and another 2 (cg19739596 and cg14328641) mapped to MS4A3 (located in the 
distal promoter and exon 1, respectively). A total of  5 CpGs were located within a CpG island, 9 at a CpG 
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island shore, 11 within a CpG island shelf, and the remaining 51 in “open sea” regions. Of  the 76 CpGs, 
42% were localized to gene body regions (Figure 2). The full ranked list of  differentially methylated CpGs, 
including their genome location, is provided in Supplemental Table 2.

GDM-associated methylation differences remained after the adjustment of  offspring BMI. Multivariate linear regres-
sion analyses were applied to address potential confounding effects of offspring sex, age, and adiposity on the 
association between GDM and offspring methylation level of the 76 differentially methylated CpGs from the 
discovery study. Overall, when only adjusting for offspring age and sex, the same group-dependent differences in 
methylation as found in the RUVm analysis were observed for all CpGs, although P values for significance were 
higher (Supplemental Table 3, Model 1). Importantly, when offspring BMI was included as a covariate together 
with offspring age and sex, the significant differences between GDM offspring and controls remained for all 
76 CpGs (Supplemental Table 3, Model 2). In contrast, differential methylation at cg13246235 (PHACTR1), 
cg25348105 (BAHCC1), and cg00042683 (SHF) were found to be associated with offspring age (P ≤ 0.04) (data 
not shown). None of the CpGs were significantly associated to sex (data not shown).

Prepregnancy mBMI confounded methylation differences between GDM and control offspring. We next inves-
tigated whether prepregnancy mBMI confounded the differences observed in methylation between cases 
and controls. When prepregnancy mBMI was included as a covariate, the significant differences between 
cases and controls became statistically insignificant for 63 of  76 CpGs. Instead, the majority of  these CpGs 
showed significant associations to their mothers’ prepregnancy BMI (Supplemental Table 3, Model 3; and 
Figure 3). The remaining 13 CpGs remained significantly associated to GDM status. The genes associated 
with these CpGs are listed in Figure 3. We further tested whether the following potential maternal and 
birth-related confounders were associated with methylation degree, also under adjustment for GDM status 
and offspring age and sex: maternal age, pregnancy weight gain, maternal smoking during pregnancy, GA, 
cesarean section, birth weight, and breastfeeding. None of  these factors were associated with offspring 
methylation degree at any of  the 76 CpGs (data not shown).

Figure 1. Overview of study design.
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Biological relevance of  differential methylation in GDM offspring. To further understand the functional rel-
evance of  the identified differentially methylated CpGs, a literature search was performed to investigate 
potential involvement of  the 76 CpGs in metabolism, environmental exposures, and related diseases. The 
search was performed in the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/), using each 
CpG number or gene name and the following terms: DNA methylation or metabolism. This showed that 
either the CpG DNA methylation or expression of  the associated gene were for 9 of  76 (11.8%) previously 
associated with T2D, obesity, diabetic nephropathy, or coronary heart disease. These CpG-associated genes 
included PDE6A, PRKCZ, PVT1, GALNT2, MS4A3, IL1RN, and BTD (Supplemental Table 2).

Table 1. Maternal, paternal, birth, and offspring characteristics

Maternal and birth characteristics GDM pregnancies Control pregnancies P value
n = 419–608 n = 457–626

Maternal age (yrs) 32.12(4.4) 31.1 (4.0) <0.001
Maternal prepregnancy BMI (kg/m2) 26.7 (7.8) 22.0 (4.0) <0.001
Pregnancy weight gain (kg) 12.2 (9.0) 14.9 (5.4) <0.001
Smoking during pregnancy (n, %) Nonsmoker: 423 (70.3%)  

Occasional: 88 (14.6%)  
Daily: 91 (15.1%)

Nonsmoker: 482 (77.0%)  
Occasional: 80 (12.8%)  

Daily: 64 (10.2%)

0.015

Maternal sociooccupational status High proficiency: 47 (8.4%)  
Medium proficiency: 142 (25.5%)  

Skilled: 110 (19.7%)  
Students: 43 (7.7%)  

Unskilled: 141 (25.3%)  
Unemployed: 74 (13.3%)

High proficiency: 74 (12.3%)  
Medium proficiency: 199 (33.2%)  

Skilled: 120 (20.0%)  
Students: 67 (11.2%)  
Unskilled: 97 (16.2%)  

Unemployed: 43 (7.2%)

<0.001

Parity (n: nulliparity/1 child/2+ children) (227/218/132) (310/212/97) <0.001
Cesearian section (n yes, %) 151 (24.8%) 92 (14.7%) <0.001
Multible births (n: singletons/twins/triplets) (574/34/3) (624/2/0) <0.001
Gestational age (GA) (days) 275.8 (12.9) 280.8 (11.20) <0.001
Birth weight (g) 3705 (657) 3583 (421) <0.001
Breast feeding (n, %) 0–1 month: 66 (15.8%)  

2–3 months: 50 (11.9%)  
4–6 months: 78 (18.6%)  
7–9 months: 99 (23.6%)  
10+ months: 126 (30.1%)

0–1 month: 34 (7.4%)  
2–3 months: 35 (7.4%)  

4–6 months: 82 (17.9%)  
7–9 months: 126 (27.6%)  
10+ months: 180 (39.4%)

<0.001

Paternal BMI (kg/m2) (18 months after delivery) 25.4 (4.5) 24.3 (3.7) <0.001
Offspring characteristics at follow-up: GDM offspring Control offspring P value
Anthropometric characteristics n = 593–608 n = 618–626
Age (years) 12.1 (1.5) 12.8 (1.5) <0.001
Sex (boys) 315 (52.8%) 317 (50.6%) 0.68
Weight (kg) 48.1 (12.8) 46.9 (12.0) 0.10
Height (cm) 156.5 (11.7) 159.2 (11.4) <0.001
BMI (kg/m2)A 18.7 (4.2) 17.9 (3.4) <0.001
Systolic blood pressure (mmHg) 109.6 (8.5) 109.4 (8.6) 0.75
Diastolic blood pressure (mmHg) 62.5 (6.0) 62.5 (6.0) 0.84
Heart rate (BPM) 70.9 (10.0) 68.0 (9.9) <0.001
Metabolic characteristics n = 509–529 n = 531–554
Fasting plasma glucose (mmol/l)A 5.0 (0.8) 4.8 (0.6) <0.001
Fasting insulin (pmol/l)A 68.6 (47.3) 60.9 (34.7) 0.001
Fasting C-peptide (pmol/l) 596.8 (209.0) 572.5 (187.0) 0.05
HOMA-IRA 2.2 (1.6) 1.9 (1.1) <0.001
Body composition measured by DXA n = 206 n = 460
Total fat % 31.2 (8.1) 27.0 (7.0) <0.001
Total lean mass % 66.2 (7.5) 70.1 (6.5) <0.001
Total bone mass density (mg/cm2) 0.9 (0.1) 1.0 (0.1) <0.001

Values are mean (SD), median (IQR) or n (%). P values calculated using Student’s t test, Mann-Whitney U test, or χ2. DXA, Dual-Energy X-ray 
Absorptiometry. AData have been calculated as medians.
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Pathway analysis. In order to gauge some further insights into the cellular pathways showing epigene-
tic variation in association with exposure to maternal GDM, the list of  CpGs showing differential meth-
ylation was expanded to include those with an unadjusted threshold of  P < 0.0001 in the RUVm anal-
ysis. This produced a list of  292 CpG sites, annotated to 176 genes. Using ingenuity pathway analysis  

Table 2. List of differentially methylated CpGs between GDM offspring and controls

Probe 
no.

Gene name Probe name Genome 
location

Adj. P 
value

methylation 
difference (%)

Probe 
no.

Gene name Probe name Genome 
location

Adj. P 
value

methylation 
difference (%) 

1 PDE6A cg09109411 Body 0.004 –2.81 39 FUT3 cg09001777 TSS200 0.029 –1.80
2 cg11638399 0.015 –2.39 40 XDH cg09842053 TSS1500 0.029 –1.18
3 GTPBP5/ 

MTG2
cg21341487 5′UTR 0.015 –2.51 41 ESM1 cg00992687 3′UTR 0.029 –1.85

4 ESM1 cg09452568 Body 0.021 –2.60 42 DCBLD1 cg04344000 Body 0.029 1.73
5 TAP2 cg05689267 Body 0.021 –1.59 43 cg24219974 0.029 1.92
6 FBXL13 cg05671644 Body 0.021 –2.58 44 cg06873024 0.029 –2.28
7 PRKCZ cg26930596 Body 0.022 –2.54 45 KLHDC4 cg04043336 3′UTR 0.029 0.78
8 PVT1 cg07305933 Body 0.022 –2.59 46 cg03580292 0.031 –2.22
9 SYNPO2L cg19157819 3′UTR 0.024 –2.47 47 LOC152225 cg05429448 TSS200 0.031 –2.60
10 CSPP1  

COPS5
cg21320567 TSS1500 0.024 –2.58 48 CEACAM8 cg14779825 TSS1500 0.031 –2.07

11 PCSK5 cg13438337 Body 0.024 –2.95 49 cg24743290 0.031 –2.70
12 S100P cg26233331 1stExon,  

5′UTR
0.024 –2.40 50 BTD cg21634628 3′UTR 0.031 1.50

13 CAPN14 cg01627252 3′UTR 0.024 –2.60 51 SIK3 cg06928797 Body 0.031 –1.56
14 GALNT2 cg13359998 Body 0.024 –2.05 52 GJB6 cg03568673 3′UTR 0.031 –2.14
15 TSPAN14 cg11411705 5′UTR 0.024 –1.65 53 CLRN1 cg24721964 TSS1500, 

Body
0.032 –1.99

16 GNAI2 cg26226650 Body 0.024 –2.17 54 TBC1D1 cg00812557 Body 0.032 –2.00
17 MS4A3 cg14328641 TSS1500 0.024 –2.31 55 SORCS2 cg19848118 Body 0.035 1.27
18 NEO1 cg11357013 Body 0.024 –2.38 56 ZAK cg11119767 Body 0.035 –2.72
19 cg02399831 0.024 –2.73 57 MFSD6 cg04144521 5′UTR 0.037 –2.34
20 CERK cg06766034 3′UTR 0.025 –2.79 58 APBA1 cg14397918 Body 0.037 –2.19
21 MIR1304  

SNORA8  
SNORD5  

SNORA18

cg01580228 TSS200,  
TSS1500

0.025 –2.52 59 TTN  
MIR548N

cg19906284 Body 0.037 –2.74

22 IL1RN cg03989987 5′UTR, Body, 
1stExon

0.025 –1.97 60 PPT1 cg07033722 3′UTR 0.041 –2.28

23 AVIL cg26620147 TSS1500 0.025 –2.23 61 MS4A3 cg19739596 1stExon, 
5′UTR

0.041 –2.03

24 AP2A1 cg07377519 TSS1500 0.026 –2.09 62 NOTCH4 cg20241876 Body 0.043 –2.04
25 POR cg20720686 5′UTR 0.026 –2.30 63 cg02551745 0.043 –2.13
26 AGXT cg16967583 TSS1500 0.026 –2.21 64 NADK cg00992048 Body 0.044 –1.96
27 cg05627557 0.026 –2.82 65 C20orf3 cg20661985 Body 0.044 –2.58
28 UACA cg12157761 Body 0.026 –2.28 66 cg11557901 0.046 –2.67
29 PRRT2 cg19769182 5′UTR 0.026 –4.10 67 MARCH3 cg08975164 5′UTR 0.046 –2.10
30 ZNF516 cg20429104 Body 0.026 –1.43 68 GNRHR2 cg22713444 Body 0.046 –2.26
31 ENTPD1 cg13471990 TSS1500,  

TSS200, Body
0.027 –2.12 69 cg20689978 0.046 –0.75

32 PHACTR1 cg13246235 Body 0.028 –5.19 70 TNFRSF17 cg02368508 Body 0.046 2.04
33 BAHCC1 cg25348105 Body 0.029 –0.88 71 HAPLN4 cg03719032 TSS1500 0.048 –1.19
34 cg19987129 0.029 –2.42 72 NLK cg05475440 Body 0.048 –2.14
35 TEX2 cg17837191 5′UTR 0.029 –2.34 73 SHF cg00042683 Body 0.048 –0.60
36 ZDHHC14 cg23206115 Body 0.029 –2.22 74 cg02262553 0.049 –2.73
37 NDUFS6 cg11442326 Body 0.029 –1.76 75 C1orf106 cg06834507 Body 0.049 –1.67
38  cg04932082  0.029 –2.31 76 CCNH cg02021919 Body 0.049 –2.86

Bold indicates CpG sites that were used in subsequent validation/replication anayses.
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(IPA; http://www.ingenuity.com), these were enriched for 5 important functional networks, with lipid 
metabolism being the highest ranked (Table 3).

Technical validation of  3 differentially methylated CpGs from the discovery study. To technically validate 
the results of  the discovery study, we performed pyrosequencing of  4 CpGs including cg00992687 and 
cg09452568 (ESM1), cg14328641 (MS4A3), and cg09109411 (PDE6A) within the 186 offspring from the 
discovery study. Selection criteria of  these CpG sites are explained in detail in Methods.

Direct comparison of  the HM450K array and pyrosequencing methylation data of  the 4 CpGs (Supple-
mental Figure 2) revealed highly significant positive correlations (P < 0.0001, Pearson’s r coefficient ≥ 0.91), 
highlighting the sensitivity and reproducibility of  the HM450K approach (Supplemental Figure 3, A–D). 
Three additional CpG sites in the vicinity of  cg00992687 (ESM1), 1 CpG site in the vicinity of  MS4A3, and 
3 additional CpG sites in the vicinity of  PDE6A were also analyzed in the pyrosequencing assays, revealing 
trends toward lower methylation in association with the GDM, in accord with the HM450K array discov-
ery data (Supplemental Figure 4, A–C).

Replication of  3 differentially methylated CpGs identified in the discovery study. For biological replication of  
the results of  the discovery study, we performed pyrosequencing of  cg00992687 and cg09452568 (ESM1), 
cg14328641 (MS4A3), and cg09109411 (PDE6A) in the remaining 905 offspring from the original cohort 
not included in the discovery approach. We performed multivariate analysis with adjustment for GDM 
status, mBMI, and offspring sex and age (n = 445–788). These analyses were performed independently on 
pyrosequencing data for 10 CpG sites: 4 identified from the discovery study and 6 flanking sites.

Methylation at cg09452568 (ESM1) and the adjacent 2 CpG sites was significantly ~0.3%lower per 
each kg/m2 increase in prepregnancy mBMI (P ≤ 0.03) (Table 4). Cg00992687 (ESM1) was also borderline 
significantly 0.2% lower per each kg/m2 increase in prepregnancy mBMI (P = 0.08). A similar pattern was 
present for cg14328641 (MS4A3) and the adjacent position 2 CpG, which both decreased significantly by 
0.2% per each kg/m2 increase in prepregnancy mBMI (P ≤ 0.03). No independent association between 
GDM status and methylation was found for either ESM1 or MS4A3 CpGs sites (P ≥ 0.51). Interestingly, we 
observed that methylation at cg09109411 (PDE6A) and all 3 adjacent CpGs were significantly associated 
with GDM status, increasing by ~2% in GDM offspring. Only 1 site (position 1) of  PDE6A showed weak 
evidence of  lower methylation with increasing mBMI (P = 0.06) (Table 4).

In addition, we observed that methylation at both ESM1 and MS4A3, but not the PDE6A, were asso-
ciated with sex, and all were lower in females (P ≤ 0.01). Methylation at all 4 ESM1 sites were negatively 
associated with age (P ≤ 0.02) (Table 4).

Discussion
To our knowledge, this is the largest genome-wide DNA methylation study in GDM offspring and controls 
yet performed. We showed that exposure to GDM is associated with DNA methylation variation in 9- to 
16-year-old offspring. The list of  identified differentially methylated genes includes several genes previously 
associated to metabolic disease. Interestingly, the majority of  differentially methylated CpGs among off-
spring of  women with GDM appear to be confounded by and associated with prepregnancy mBMI rather 
than GDM in isolation, suggesting a role of  maternal obesity in programming of  epigenetic traits among 

Figure 2. Genomic features and distribution of the 76 differ-
entially methylated CpGs.
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offspring of  women with GDM in pregnancy. Three of  these mBMI-associated CpGs identified in the 
discovery cohort (cg00992687 and cg09452568 of  ESM1 and cg14328641 of  MS4A3) were replicated in 
our larger cohort (n = 445–788), while cg09109411 (PDE6A) was found to be specifically associated with 
GDM status. Furthermore, our results show that the maternal exposures of  GDM and obesity occurring 
9–16 years ago are more associated with offspring DNA methylation profile than the offspring’s own BMI 
at the adolescent age. Lipid metabolism and endocrine disorders were among the most significant biologi-
cal functions identified in the pathway analysis of  the genes harboring the differentially methylated CpGs, 
supporting the notion that GDM-associated methylation may play an important role in transmission of  
metabolic risk from GDM mother to offspring. Indeed, this is consistent with the mounting data showing 
increased risk of  T2D, obesity, or associated cardiometabolic disease in offspring affected by diabetes in 
pregnancy (1, 31, 32).

Previous genome-wide methylation studies in GDM offspring performed in birth samples (cord blood 
and placenta) and in 8- to 12-year-old offspring (24–26) did not examine the potential confounding effects of  
maternal obesity, nor the infant’s or child’s own adiposity. Our results for ESM1 and MS4A3 from the discov-
ery study, which were confirmed in the replication study, suggest that prepregnancy mBMI, rather than GDM 
in isolation, is associated with the offspring epigenetic profile. Indeed, in our previous study of  adult offspring 
of  women with and without GDM, we observed that prepregnancy mBMI was associated with PPARGC1A 
DNA methylation in s.c. adipose tissue of  the offspring (33). A recent PACE consortium meta-analysis found 
small effects of  prepregnancy mBMI on cord blood methylation, which were mainly explained by cell het-
erogeneity and/or confounding by shared maternal-child environment. Still, several associations between 
prepregnancy mBMI and methylation at birth were replicated in an independent large sample of  adolescents 
(34). None of  the CpGs associated with GDM or mBMI in our study were associated with mBMI in the 
PACE study. However, our study participants were recruited based on GDM status; therefore, different meth-
ylation changes may be in play, compared with the PACE study, where recruitment were based on maternal 
obesity. Furthermore, the stressful perinatal environment may cause acute and more transient methylation 
changes that make the true programming changes undetectable. However, interestingly, we found that 2 of  
the 76 CpGs (PRKCZ, a serine-threonine kinase involved in proliferation, differentiation and secretion, and 

Figure 3. Maternal GDM and/or obesity -associated CpGs/genes. Genes and CpGs associated to GDM and/or maternal 
prepregnancy BMI after adjustment for GDM status, prepregnancy mBMI, and offspring sex and age (P ≤ 0.05), using 
multivariate, linear modeling. aAssociation to GDM status at P ≤ 0.10; bassociation to prepregnancy mBMI at P ≤ 0.10. 
Underline represents CpG sites that were used in subsequent validation/replication analyses. Multivariate linear regres-
sion analysis, adjusting for GDM status, offspring age, sex, and prepregnancy maternal BMI; n = 175.
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PRKAR1B, the regulatory subunit of  cyclic AMP-dependent protein kinase A that is involved in signaling 
pathways of  many cellular events, including ion transport, metabolism, and transcription; refs. 35 and 36) 
were both also reported to be differentially methylated in cord blood by Quilter et al. (24).

Previous studies of  GDM-associated DNA methylation in offspring have been inconclusive, likely due 
to lack of  power, but they all indicate methylation changes associated with genes involved in metabolic 
pathways (24–26). Indeed, our pathway analysis results suggest that exposure to GDM or maternal obesity 
impacts multiple gene-associated networks, including lipid metabolism, developmental disorders, endo-
crine disorders, and organ development. These incorporate key genes to a number of  intracellular signaling 
pathways including the TREM1 signaling pathway involved in inflammatory responses through monocyte 
and neutrophil activation, as well as genes involved in the signaling pathways of  IL-1, a proinflammatory 
cytokine produced, for example, by activated macrophages and lymphocytes. Furthermore, key genes in 
GPCR-mediated nutrient sensing in enteroendocrine cells and genes involved in sphingosine-1-phosphate 
signaling important in regulation of  embryogenesis, cardiogenesis, and vascular development were also 
affected, further suggesting that our findings of  differentially methylated CpGs offer a window into patho-
physiological processes. In addition, Hajj et al. reported endocrine system disorder and developmental pro-
cesses as top disorders and biological functions affected (20), and Ruchat et al. reported the top pathways 
gastrointestinal disease, metabolic disease, and endocrine system disorder affected (25) — all pathways 
that were replicated in our study. The pathway networks — tissue morphology, cellular maintenance, and 
organismal injury — were also among top hits in our analysis and may be speculated to be a reflection of  
DNA damage and repair mechanisms, which could be associated with diabesity. Functional studies are 
required to further examine this association.

By exploring the chromatin states of  76 CpGs using ENCODE data, we found high presentation of  
promoters and regulatory elements. This further suggests that the differentially methylated CpGs may have 
functional importance in regulating transcription; unfortunately, RNA was not available in the present 
study to explore this hypothesis further.

Several of  the 76 CpGs from the discovery study have previously been reported to show differential 
methylation in association with risk for T2D, obesity, associated cardiometabolic diseases, or aging. These 
include the top-ranked cg09109411, which is localized to PDE6A, encoding the cyclic-GMP–specific phos-
phodiesterase 6A α subunit, involved in transmission and amplification of  the visual signal (37). This CpG 
was previously reported to show decreased methylation in association with obesity shown in healthy young 
adult female and male monozygotic twin pairs discordant for BMI (n = 30 twin pairs) (38). Interestingly, 
in our discovery study, we also find decreased methylation among the GDM offspring. The same PDE6A 
CpG site (cg09109411) has also been shown to increase in methylation degree with GA, with preterm 

Table 3. Ingenuity Pathway Analysis 

Top networks  Score
Lipid metabolism, small molecule biochemistry, cellular function and maintenance 31
Cancer, organismal injury and abnormalities, endocrine system disorders 26
Cellular function and maintenance, infectious diseases, developmental disorder 26
Developmental disorder, endocrine system disorders, gastrointestinal disease 24
Organ development, reproductive system development and function, tissue morphology 24
Top canonical pathways P value Overlap
TREM1 Ssignaling 2.89 × 10–3 5.3% (4/75)
GPCR-mediated nutrient sensing in enteroendocrine cells 4.35 × 10–3 4.8% (4/84)
IL-1 signaling 5.77 × 10–3 4.4% (4/91)
CXCR4 signaling 7.05 × 10–3 3.3% (5/152)
Sphingosine-1-phosphate signaling 1.08 × 10–2 3.7% (4/109)
Diseases and disorders P value No. of molecules
Cancer 7.74 × 10–3 to 2.60 × 10–8 154
Organismal injury and abnormalities 7.74 × 10–3 to 2.60 × 10–8 157
Inflammatory response 6.84 × 10–3 to 2.38 × 10–8 41
Renal and urological disease 7.08 × 10–3 to 5.43 × 10–6 43
Gastrointestinal disease 6.84 × 10–3 to 1.20 × 10–5 139
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infants showing lower methylation levels (39). Furthermore, the second-ranked CpG (cg11638399) was 
also found in the above-mentioned twin study to exhibit decreased methylation in the obese group (38), 
with the same direction of  methylation change as we report in the GDM offspring. Cg19739596 (MS4A3, 
encoding a member of  the membrane-spanning 4A gene family, involved in immune signal pathways) 
showed decreased methylation in adipose tissue of  T2D subjects (40), again in the same direction as we 
found in the GDM offspring. Moreover, cg26930596 (PRKCZ) methylation degree in CD4+ T cell DNA has 
been associated to exposure to sunlight (41), enforcing that methylation degree of  this site is influenced by 
environmental factors. Additionally several CpGs in the PRKCZ promoter have been shown to be hyper-
methylated in leucocyte DNA from adult T2D patients (35). Of  the majority of  the remaining CpGs, the 
functionality related to DNA methylation of  the associated gene has not yet been recognized.

There are limitations to this study. DNA from peripheral blood samples consists of  more than 1 cell 
type; nonetheless, we did not observe any differences in cell composition. In this study, we have only mea-
sured the average DNA methylation degree across all the different blood cell types of  the samples collected. 
Therefore, the individual methylation changes of  the specific cell types may most likely be of  a higher extent 
than the average differences we can report. A small methylation difference in blood might reflect a larger dif-
ference in more metabolic relevant tissue, which is known from previous studies (27). Also, it is unknown to 
which extent an effect of  1%–5% change in methylation may have across a whole lifetime or how important 
the accumulative effects are. Finally, it is important to recognize that methylation of  the circulating hetero-
geneous mixed blood cells at a single point in time may not reflect a fixed methylation change at any other 
potentially more important tissue level. Investigating methylation changes at such prime tissues in large 
populations such as the current is, however, not feasible, especially in childhood studies.

The potential exists that these changes reflect target organ disease mechanisms in diabetes and/or are 
suitable as biomarkers to predict diabetes. However, validation of  all 76 differentially methylated CpGs 
from the discovery study would be needed to state that the associations with the offspring dysmetabolic 
phenotype in the larger cohort are associated with methylation changes of  the enriched pathways found in 
the discovery cohort.

Unfortunately, we have in this cohort no information on the severity of  GDM and how it was treated, 
and we acknowledge that treatment-related differences cannot be excluded as a potential confounder. Final-
ly, in this study design, it is not possible to conclude on the stability of  these CpGs; longitudinal studies 
are required for this. Further validating in cord blood samples or across tissue types would be beneficial in 
elucidating possible roles of  these CpGs in the disease risk of  GDM offspring.

Conclusions. Our results suggest that GDM and prepregnancy mBMI have long-term effects on off-
spring epigenetic profile, which supports that DNA methylation is involved in fetal metabolic program-
ming. We provide evidence of  potential postnatal stability of  previously published differentially methylated 
CpGs shown at birth among GDM offspring. Further longitudinal studies, commencing prior to birth, with 
detailed clinical information and biospecimens are required to unravel the potentially complex interplay 

Table 4. Association between maternal GDM, prepregnancy BMI, and offspring methylation degree at ESM1, MS4A3, and PDE6A CpG sites

Association to GDM status Association to prepregnancy mBMI Association to sex Association to age
 β (95% CI) P value β (95% CI) P value β (95% CI) P value β (95% CI) P value
ESM1 (cg00992687) 0.1 (–2.2, 2.4) 0.94 –0.2 (–0.4, 0.02) 0.08 –3.2 (–5.2, –1.1) 0.002 –0.9 (–1.6, –0.2) 0.01
ESM1 (Pos. 2) 0.4 (–2.0, 2.8) 0.75 –0.3 (–0.5, –0.04) 0.02 –3.4 (–5.5, –1.3) 0.002 –0.9 (–1.6, –0.1) 0.02
ESM1 (Pos. 3) 0.5 (–1.4, 2.4) 0.61 –0.3 (–0.4, –0.01) 0.002 –3.2 (–4.8, –1.6) <0.001 –0.9 (–1.5, –0.3) 0.002
ESM1 (cg09452568) –0.6 (–2.5, 1.2) 0.51 –0.2 (–0.4, –0.03) 0.03 –3.5 (–5.1, –1.8) <0.001 –1.0 (–1.5, –0.4) 0.001
MS4A3 (cg14328641) 0.6 (–1.3, 2.5) 0.51 –0.2 (–0.4, –0.03) 0.02 –2.8 (–4.5, –1.1) 0.001 –0.5 (–1.1, 0.1) 0.10
MS4A3 (Pos. 2) 0.5 (–1.4, 2.4) 0.60 –0.2 (–0.4, –0.02) 0.03 –2.4 (–4.1, –0.7) 0.005 –0.5 (–1.1, 0.04) 0.07
PDE6A (Pos. 1) 1.7 (0.7, 2.7) <0.001 –0.1 (–0.2, 0.002) 0.06 –0.04 (–0.9, 0.8) 0.94 –0.03 (–0.3, 0.3) 0.84
PDE6A (cg09109411) 2.4 (0.07, 4.7) 0.04 –0.1 (–0.3, 0.2) 0.59 –0.5 (–2.6, 1.6) 0.63 –0.3 (–1.0, 0.4) 0.43
PDE6A (Pos. 3) 2.3 (0.02, 4.6) 0.05 –0.1 (–0.3, 0.1) 0.28 –0.5 (–2.6, 1.5) 0.62 –0.3 (–1.0, 0.5) 0.49
PDE6A (Pos. 4) 2.4 (–0.04, 4.8) 0.05 –0.1 (–0.3, 0.2) 0.60 –0.3 (–2.4, 1.9) 0.82 –0.3 (–1.0, 0.4) 0.39

Estimated change in DNA methylation percentage is presented as β (95% CI) and P value. Adjusted for GDM status, as well as prepregnancy maternal BMI 
and offspring sex and age. n = 445–788. Multivariate linear regression analysis. 
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between prepregnancy mBMI and GDM in both offspring metabolic health and epigenetic profile. The 
potential exists that methylation changes in circulating blood cells reflect target organ disease mechanisms 
in diabetes and are suitable as biomarkers to predict metabolic disease in offspring of  women with GDM.

Methods
Study cohort. The DNBC enrolled 91,827 women (101,045 total pregnancies) between January 1996 and 
October 2002, of  which 1,350 had GDM. This GDM subgroup, together with a random control group 
consisting of  2,629 pregnancies within DNBC, was established to study the long-term health implications 
of  glucose intolerance in pregnancy (42). GDM cases were defined by a GDM-related diagnosis recorded 
in the Danish National Patient Registry (International Classification of  Diseases–10 [ICD-10] codes O24.4 
and O24.9) and/or a self-reported GDM event from study interviews at 30 weeks of  gestation or 6 months 
postpartum. The diagnosis of  suspected GDM in the DNBC has previously been described (43).

Between March 2012 and May 2014, 608 offspring of  mothers with GDM and 626 offspring of  mothers 
from the control group not affected by GDM were included in the study. Clinical examinations and biospec-
imen collection was conducted at local temporarily established clinics across all major regions of  Denmark.

Clinical examinations. The offspring of  GDM women and controls underwent a clinical examination 
including anthropometry measurements, puberty Tanner status examination (44), blood pressure, HR, and 
fasting blood samples for later measurement of  biomarkers including glucose, insulin, C-peptide, and lipid 
profiles. Standard assays were used for biomarker analysis as previously described (10). HOMA-IR was cal-
culated as: ([(fasting plasma insulin × fasting plasma glucose)/22.5] × 0.144). Study participants examined 
at the Copenhagen University Hospital (n = 666) were also studied for body composition using Dual-Ener-
gy X-ray Absorptiometry (DXA) scanning (Lunar, Scanex Medical Systems).

DNA sample collection and extraction. A strictly enforced standardized sample collection procedure was 
used across all study examination sites to secure comparable results. EDTA tubes (10 ml, BD Biosciences) 
were placed directly on ice after collection of  venous blood and then, within 10 minutes, centrifuged for 
10 minutes at 4oC, at 1,100 g (Eppendorf  Centrifuge, 5810R, MilliporeSigma). Buffy coat was prepared 
from EDTA tubes and stored immediately at –20oC with subsequent transfer (within 8 hours) to –80oC 
until later DNA isolation. Buffy coats were collected from 536 GDM offspring and 555 control offspring: 
in total 1,091 offspring. DNA samples were extracted from all 1,091 buffy coat samples using the QIAamp 
96 DNA blood kit (Qiagen).

DNA methylation profiling. We designed our DNA methylation study as a genome-wide discovery study 
performed in a subgroup of  GDM and control offspring, followed by a technical validation in the same 
samples, and finally biological validation in the remaining samples from the entire cohort (Figure 1). Epig-
enome-wide DNA methylation measurement was performed using the Illumina’s Infinium HumanMethyl-
ation450 BeadChip (HM450K array) on a subset of  95 GDM offspring (46 female, 49 male) and 95 control 
offspring (44 female, 51 male), matching age, sex, and time of  the year of  the clinical examinations. The 
discovery cohort was selected carefully to ensure the GDM diagnosis in the GDM offspring group and, 
furthermore, to minimize the risk of  unrecognized glucose intolerance/diabetes in the mothers of  the con-
trol offspring group. Thus, GDM mothers were defined using strict criteria of  (a) fasting glucose level ≥7 
mmol/l, (b) a 2-hour oral glucose tolerance test (OGTT) glucose level ≥7.8 mmol/l, and/or (c) with a clini-
cians verified diagnosis of  GDM. GDM offspring of  mothers who had either prediabetes or diabetes based 
on the OGTT at time of  the follow-up study were prioritized. Additionally, we only included offspring of  
control mothers with no prediabetes or diabetes at the time of  the follow-up study in order to reduce risk 
of  including false negatives.

DNA from the 190 buffy coat samples was processed at Service XS (Leiden) for methylation analysis. 
To minimize batch effects, samples were randomized per study group, age, and sex, as well as GA, previ-
ously shown to influence epigenetic variation (39). Bisulfite (BS) conversion of  500 ng DNA was performed 
(EZ-DNA Methylation Gold kit, Zymo), and conversion quality control (QC) was conducted by quantita-
tive PCR (qPCR) and melting curve analysis.

BS-converted DNA was hybridized to the Illumina BeadChips according to the Infinium Protocol (Illu-
mina). The BeadChip images were scanned using the iScan system, and raw β values were exported as 
iDAT files with Methylation Module (v.1.9.0, Illumina), using default analysis settings.

Preprocessing and analysis of  HumanMethylation450 BeadChip Arrays. Raw methylation data was preprocessed 
using the Minfi (45) package from the Bioconductor project (http://www.bioconductor.org) in the R statistical 
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environment (http://cran.r-project.org, version 3.0.2). QC was performed by assessment of sample-dependent 
and sample-independent control probes for BS conversion, staining, hybridization, extension, and specificity. 
Probes with detection P > 0.01 in 1 or more samples and samples with a mean detection P > 0.05 were removed 
prior to statistical analysis. In total, 2 samples were removed, as they did not pass 1 or more QC measures. 
Data filtering was conducted to remove: (a) X/Y chromosome probes that may lead to sex-specific bias, (b) 
cross-reactive probes (>47 bases matched to more than 1 genomic target), (c) probes containing a single nucleo-
tide polymorphism (SNP) at the interrogated CpG or the single-base extension site, and (d) non-CpG targeting 
probes (46). Following QC, the size of the final data set was 188 samples (93 GDM offspring, 95 control off-
spring) with methylation data from 425,344 probes (referred to as CpGs) across all samples. Cell count estima-
tion was performed empirically using surrogate variable analysis (47, 48), by the “estimate cell composition” 
function in the Minfi package. No differences in cell composition were identified, and cell composition was 
deemed unlikely to be a confounder; therefore, we did not correct for cell composition in following analyses 
(Supplemental Figure 5).

Following data preprocessing, β values were converted to M-values (M = log2 [unmethylated signal 
intensity/methylated signal intensity]) (49). We performed multidimensional scaling analysis (MDS) and 
principal component analysis (PCA) to examine the sources of  variation in the data and to determine 
whether these correlate with participant factors of  interest or known covariates, which included offspring 
sex and age, GA, birthweight, and maternal age.

To identify differentially methylated CpGs between GDM and control offspring, the 2-step RUVm 
method from the MissMethyl Bioconductor package was used (50, 51). Briefly, in the first step, the 613 
Illumina negative controls were used in a linear regression to derive the components of  unwanted vari-
ation that should be adjusted, such as technical variation including batch, slide, and array effects. By 
including these in the first pass analysis, we reduced that type of  unwanted variation, which improves 
the ability to rank the probes with regard to their association with the factor of  interest: GDM status. 
However, this initial analysis does not capture unwanted biological variation. Therefore, in the sec-
ond step of  the analysis, the probes least likely to be associated with the factor of  interest are used as 
adjustment (the probes in the bottom half  of  the first list) to capture further components of  unwanted 
variation, including biological factors such as cellular heterogeneity. All P values were adjusted for 
multiple testing using the Benjamini-Hochberg method, with a false discovery rate threshold of  5% 
(52). To facilitate biological interpretation, percentage methylation was expressed as β values (β = 
Meth/[Unmeth + Meth + 100]).

IPA. The identified differentially methylated CpGs between GDM and control offspring were assigned 
to linked genes using the HM450K array annotation file. These were then subjected to pathway analy-
sis using the IPA tools based on curated databases of  previously ascertained biological interactions. This 
approach, however, does not take into account the bias toward cancer genes and promoter regions on the 
HM450K array.

ENCODE data analysis. To determine the likely functional relevance of  CpG sites of  significant differential 
methylation, we interrogated the ENCODE data (ChromHMM, cell line GM12878, Broad Institute) (53).

Validation and replication. We chose to validate 3 different genes from the discovery study. These 3 were 
selected by, firstly, prioritizing genes with more than 1 differentially methylated CpG site in the same gene 
(there were, in total, 2 genes with 2 differentially methylated CpGs) and, secondly, prioritizing P value sig-
nificance (the top 1 CpG/gene on the list. These genes and CpG sites were as follows: ESM1 (cg00992687 
and cg09452568), MS4A3 (cg14328641), and PDE6A (cg09109411). For ESM1, both CpG sites that were 
found to be differentially methylated in the discovery study were located in close proximity; therefore, it 
was possible to include both sites in the same pyrosequencing assay. An overview of  ESM1, MS4A3, and 
PDE6A CpG sites investigated are shown in Supplemental Figure 1. We conducted both a technical vali-
dation of  the array samples (n = 188) and a biological validation/replication, using the remaining samples 
from the original cohort as a perfectly matched replication cohort (n = 905) (Figure 1).

DNA BS conversion was performed with 500 ng using the EZ-96 Methylation Gold Kit (Zymo). Mea-
surement of  DNA methylation was performed using the Pyrosequencing technique (PyroMark Q96ID, 
Qiagen) with PyroMark Gold Q96 reagents. PCR and sequencing primers were designed using PyroMark 
Assay Design 2.0 (see Supplemental Table 4 for primer sequences). Data was analyzed with PyroMark Q96 
(version 2.5.8) software. After QC, 788 samples passed for the ESM1 CpG assay, 787 samples passed for the 
MS4A3, and 445 samples passed for the PDE6A assay and were included in the final analyses.
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Statistics. Continuous variables were tested for normality. Normally distributed data are presented in 
mean ± SD and compared by 2-tailed Student’s t test. Irregularly distributed data are presented as median 
and interquartile range (IQR) and compared by the Mann-Whitney U test. The χ2 test was used for analysis 
of  frequencies.

The statistical analysis of  the genome-wide methylation data by the RUVm method is described above.
Multivariate linear regression models were applied to address potential confounding effects on the 

association between GDM status and offspring methylation level of  the differentially methylated CpG sites 
from the discovery study. In order to test whether the association of  GDM with offspring methylation level 
of  the differentially methylated CpGs was influenced by the offspring phenotype, we conducted regression 
analyses by adjusting for offspring sex, age, and BMI in the discovery cohort. In a secondary analysis, we 
investigated if  prepregnancy mBMI had confounding effects on the results of  the differentially methylated 
CpGs, also adjusting for offspring sex and age.

In the replication study of  the selected ESM1, MS4A3, and PDE6A CpG sites, multivariate regression 
modeling was applied to address the association between GDM status, prepregnancy mBMI, and DNA 
methylation levels, with adjustment for offspring sex and age.

In all regression models, we estimated mean differences as β coefficients and 95% CI. Assumptions of  
equal variance and normally distributed residuals were visualized in quantile-quantile plots (QQ plots) and 
histograms. All statistical analyses were performed using the SAS 9.3 statistical software (SAS Institute 
Inc.) and a P ≤ 0.05 was considered statistically significant.

Study approval. Consent from both parents was essential for the participation of  the child in the study. 
The study design and protocol were approved by the Regional Scientific Ethical Committee of  the munici-
palities of  Copenhagen and Frederiksberg (H-4-2011-045 and H-4-2013-129) and conformed to the Decla-
ration of  Helsinki.
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