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Introduction
MicroRNAs (miRs) are a class of  small, noncoding RNAs that regulate cellular processes through RNA 
silencing and posttranscriptional regulation of  gene expression. Primary miR (pri-miR) transcripts may 
originate from intergenic, intronic, or exonic regions of  host genes (1). In the nucleus, pri-miRs are tran-
scribed and then cleaved by the ribonuclease Drosha to produce a precursor-miR (pre-miR) (2). Exportin 
5 transports pre-miRs to the cytoplasm where they undergo a final cleavage by the endonuclease Dicer, 
giving rise to mature miRs (3). Mature miRs bind to complementary messenger RNA (mRNA) sequences 
of  target genes via the RNA-induced silencing complex (RISC). Interactions between miRs and targets 
with a high degree of  complementarity result in mRNA degradation, while imperfect interactions between 
miR and target transcripts usually result in translational repression (4). Until recently, the main focus of  
miR research has been to identify downstream target genes and biological functions. Researchers are now 
exploring upstream signaling pathways that regulate miR expression. miRs are mostly regulated by the 
promoters of  their host genes, which are transcriptionally induced in cis or trans by transcription factors (5, 
6). For example, let-7e and miR-98 are estradiol-regulated miRs that reduce c-Myc and E2F2 expression in 
breast cancer cells (7). Estrogen can also act indirectly by inducing c-Myc to bind to the miR-17–92 promot-
er (8). miR-146a, which exhibits cartilage-destructive effects, is induced by LPS in an NF-κB–dependent 
manner in human monocytes (9). Despite substantial progress in understanding miR expression patterns 
in osteoarthritis (OA), their regulatory mechanisms are still widely unknown. Bioinformatic algorithms 
predict that each miR can regulate hundreds of  mRNA targets and individual genes are regulated by mul-
tiple miRs, thereby mediating a diverse array of  biological functions across most signaling cascades. Some 
miRs target multiple genes in the same pathway (intrapathway), while others target genes across diverse 
pathways (universal), emphasizing the importance of  miRs in regulating whole signaling cascades (10). 

The disabling degenerative disease osteoarthritis (OA) is prevalent among the global population. 
Articular cartilage degeneration is a central feature of OA; therefore, a better understanding of 
the mechanisms that maintain cartilage homeostasis is vital for developing effective therapeutic 
interventions. MicroRNAs (miRs) modulate cell signaling pathways and various processes in 
articular cartilage via posttranscriptional repression of target genes. As dysregulated miRs 
frequently alter the homeostasis of articular cartilage, modulating select miRs presents a potential 
therapeutic opportunity for OA. Here, we review key miRs that have been shown to modulate 
cartilage-protective or -destructive mechanisms and signaling pathways. Additionally, we use an 
integrative computational biology approach to provide insight into predicted miR gene targets 
that may contribute to OA pathogenesis, and highlight the complexity of miR signaling in OA by 
generating both unique and overlapping gene targets of miRs that mediate protective or destructive 
effects. Early OA detection would enable effective prevention; thus, miRs are being explored as 
diagnostic biomarkers. We discuss these ongoing efforts and the applicability of miR mimics and 
antisense inhibitors as potential OA therapeutics.
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Not surprisingly, dysregulation of  miR expression contributes to pathologies of  various diseases, including 
cancers, neurodegenerative diseases, and metabolic disorders (11–13).

In the past few years, the OA research community has been considerably interested in miRs, especially as 
potential OA biomarkers and therapeutic targets. In this review, we provide a comprehensive summary of miRs 
known to be involved in cartilage-protective or -destructive mechanisms. Using computational approaches, we 
further highlight the complexity of miR regulation in articular cartilage by identifying unique and overlapping 
gene targets and signaling pathways of miRs that mediate protective or destructive effects to expand on their 
biological relevance and therapeutic potential. Finally, we discuss the current understanding of miRs as OA 
biomarkers and future strategies that may facilitate translation of miR-targeted therapies from bench to bedside.

Cartilage homeostasis and OA
Healthy articular cartilage is paramount to normal and pain-free joint function. Articular cartilage is a 2- 
to 4-mm-thick tissue of  hyaline cartilage comprising chondrocytes surrounded by an extracellular matrix 
(ECM). The ECM primarily contains type II collagen, proteoglycans, and non-collagenous proteins, which 
are structurally and spatially organized for optimum tensile strength and resistance to compressive forces 
(14). Risk factors such as age, sex, genetics, and obesity adversely affect matrix quality, resulting in cartilage 
function decline (15–18). Articular cartilage degeneration, particularly in appendicular joints, is central to 
the clinical syndrome of  OA. OA pathologies also include increased chondrocyte proliferation and fibro-
cartilage formation resulting from the synthesis of  abnormal matrix components, predominantly type I 
collagen (19). Fibrocartilage lacks the appropriate biomechanical properties of  articular cartilage and, con-
sequently, undergoes degeneration (20). Intact articular cartilage that borders fibrocartilage subsequently 
degenerates, resulting in OA progression.

Articular cartilage cannot self-heal and, as this tissue lacks vessels and innervation, is unable to take 
advantage of  vascular system–invoked reparative processes. As Hunter observed in 1743, cartilage “once 
destroyed, is not repaired” (21). Over time, catabolic activity outcompetes anabolic attempts, disrupting 
cartilage homeostasis. Other joint components, including the subchondral bone and synovium, contribute 
to cartilage destruction and OA progression through various mechanisms, such as catabolic enzyme expres-
sion, paracrine modulation of  neighboring cells via inflammatory cytokines, and release of  other molecular 
regulators, including miRs (22–24).

miRs and articular cartilage
miRs that are differentially expressed in cartilage, synovial fluid, and blood of  patients with OA compared 
with those from healthy individuals likely contribute to OA pathophysiology (25–31). For instance, a miR 
signature comprising 9 increased and 7 decreased miRs was identified in human OA cartilage compared 
with normal cartilage (26). Proteomic analysis of  predicted gene targets of  OA-associated miRs identified 
SRY-box 11 (SOX11), CCR3, and WW domain–containing oxidoreductase (WWOX), all of  which are dif-
ferentially expressed in OA chondrocytes and may alter cartilage homeostasis. Thus, microarray screening 
can identify candidate miRs that can be used to predict mRNA targets, proteins, and pathways that may 
contribute to OA pathogenesis. This approach identifies potential therapeutic targets for further research.

Cellular and tissue maintenance mechanisms are critical for preservation of  cartilage integrity and 
function. Autophagy is fundamental in maintaining chondrocyte homeostasis and adjusts cell metabolism 
in response to various stresses by removing damaged and unnecessary intracellular organelles and proteins 
(32). During OA, autophagy-related proteins are markedly reduced in articular cartilage and contribute to 
cartilage degeneration (33). miRs regulate autophagy machinery in cartilage by directly targeting 3′-UTRs 
of  autophagy genes, including beclin1 (BECN1) and autophagy-associated gene 5 (ATG5) (34, 35). miRs 
can also be packaged in 30- to 100-nm-sized extracellular vesicles called exosomes (36). Exosomes present 
another level of  communication between joint tissues and the systemic circulation, as they are released 
into the synovial fluid and influx into joints from circulating blood via the vascularized synovial membrane 
(37, 38). Thus, miRs not only function as cell-autonomous regulatory molecules but also mediate cell-to-
cell and tissue-to-tissue communication in joints. Overall, some miRs are involved in mediating protective 
mechanisms within the joint, while others have destructive consequences contributing to OA-associated 
molecular changes. We summarize miRs that have been shown to modulate cartilage-protective or -destruc-
tive mechanisms in OA in Figure 1, and describe their functional roles in Supplemental Tables 1 and 2 
(supplemental material available online with this article; https://doi.org/10.1172/jci.insight.121630DS1).
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miRs involved in cartilage-protective mechanisms
Inflammation and catabolic enzyme–regulating miRs. In OA, articular cartilage degradation triggers inflam-
matory responses and cytokine production in surrounding tissues of  the joint. These inflammatory 
molecules stimulate further ECM catabolism via increased protease production in chondrocytes (22). 
miR expression is affected by proinflammatory cytokines, which contribute to differential expression 
of  target genes that promote OA progression. Furthermore, miRs can directly modulate proinflam-
matory cytokine expression. For instance, inhibition of  miR-203 in LPS-treated mouse chondrocytes 
reduces cell viability, increases apoptosis, and further stimulates proinflammatory cytokine production 
(39). Maternally expressed gene 3 (MEG3) is a long noncoding RNA (lncRNA) that acts as a compet-
ing endogenous RNA, or sponge, for miR-203. MEG3 knockdown modulates LPS-induced inflam-
mation by increasing miR-203 and decreasing proinflammatory cytokines (39). Overall, these studies 
suggest that miR-203 may have an antiinflammatory role in OA. miR-92a-3p, which is involved in late 
chondrogenesis of  human mesenchymal stem cells (hMSCs), is downregulated in human OA cartilage 
and in response to IL-1β in vitro (40, 41). A disintegrin-like metalloproteinase with thrombospondin 
type 1 motifs (ADAMTS-4 and -5, also known as aggrecanase-1 and -2) and histone deacetylase 2 
(HDAC2) are validated miR-92a-3p targets; thus, IL-1β–mediated decreases of  miR-92a-3p likely pro-
mote aggrecan degradation in OA (40, 41).

Several other miRs also protect cartilage from proteolytic ECM destruction by modulating ADAMTS-5 
expression. miR-140 is one of  the first miRs shown to contribute to articular cartilage development and 
homeostasis, and normal endochondral bone development (42, 43). miR-140 is markedly downregulated in 
human OA cartilage compared with normal cartilage (26, 44). Moreover, miR-140 knockout in mice accel-
erates proteoglycan loss and fibrillation of  articular cartilage by dysregulating ADAMTS-5 expression (43). 
In rats, intra-articular injection of  miR-140 restores ECM homeostasis and prevents OA progression (45). 
Similarly to miR-140, miR-30a, which directly targets Adamts5, is decreased by IL-1β–induced activator 
protein (AP1) expression in human chondrocytes in vitro and in OA tissues in vivo (46). Thus, decreased 
expression of  miR-140 and miR-30a in chondrocytes, in part through inflammatory signaling, may contrib-
ute to increased aggrecanase activity and the catabolic shift in OA.

Some miRs protect against OA by modulating the expression of  transcription factors induced by 
inflammatory signaling pathways. For instance, miR-210, which is downregulated in OA tissue (26), pro-
motes survival of  LPS-treated rat chondrocytes by inhibiting NF-κB signaling and apoptosis (47). In OA 
chondrocytes miR-210 overexpression inhibits HIF-3α expression, further promoting chondrocyte prolif-
eration and ECM deposition (48). Similarly, injection of  miR-210–expressing lentivirus into rats with surgi-
cally induced OA reduces select cytokine levels in synovial fluid (47).

Figure 1. miRNAs involved in cartilage-protective and cartilage-destructive mechanisms. miRNAs highlighted in red directly target MMPs. miRNAs 
highlighted in blue directly target ADAMTSs. miRNAs highlighted in green regulate inflammatory pathways. miRNAs highlighted in purple regulate cellular 
apoptosis mechanisms. The remaining miRNAs either maintain or disrupt the articular cartilage via alternate mechanisms. See Supplemental Tables 1 and 2.
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Other miRs target components of  inflammatory signaling pathway receptor complexes to modulate 
inflammatory signaling–induced joint degeneration. For example, miR-502-5p, which is downregulated 
in OA articular tissues and IL-1β–induced chondrocytes (49), targets the 3′-UTR of  the gene encoding 
TNF receptor–associated factor 2 (TRAF2), inhibiting NF-κB signaling and protecting chondrocytes from 
IL-1β–induced apoptosis (49). miR-145, a Sox9-mediated chondrogenic inhibitor, is downregulated in both 
TNF-α–induced chondrocytes and OA cartilage, resulting in induction of  downstream matrix-degrading 
enzymes (50, 51). miR-145, regulated by p65, inhibits cartilage degradation by suppressing mitogen-acti-
vated protein kinase 4 (MKK4), which decreases matrix-degrading enzyme production and inactivates 
c-JUN N-terminal kinase (JNK) and p38 (50).

As nitric oxide (NO) production promotes cartilage degeneration, miRs that inhibit inducible NO 
synthase (iNOS) expression may impart protective effects. For instance, while miR-26a-5p directly targets 
IL-1β–induced iNOS in human OA chondrocytes, it is also downregulated by IL-1β signaling in chondro-
cytes (52), limiting its protective function. In addition to MMP-19, miR-193b-3p inhibits iNOS in human 
chondrocytes. miR-193b-3p promotes chondrogenic differentiation of  hMSCs but is reduced in OA and in 
IL-1β–treated chondrocytes (53, 54). Increasing miR-193b-3p expression may inhibit degradation of  ECM 
components and moderate inflammation through regulation of  iNOS (54).

Thus, selective miRs are capable of  imparting protective effects in cartilage and maintaining tissue 
homeostasis by targeting inflammatory signaling and cartilage catabolic components. However, reductions 
in expression of  cartilage-protective miRs as part of  OA pathogenesis may contribute towards altered carti-
lage homeostasis and eventual degradation.

Senescence-regulating miRs. Both intrinsic and extrinsic mechanisms contribute to chondrocyte senescence 
as articular cartilage ages. Premature cell cycle arrest can occur due to stress-induced premature senescence 
(SIPS), such as in response to extrinsic stresses including oxidative stress and inflammation (55). Senescent 
chondrocytes exhibit a senescent secretory phenotype (SSP) characterized by increased IL-6, IL-1, MMPs, 
and growth factors. Accumulation of SSP chondrocytes alters articular cartilage homeostasis and drives aging-
related cartilage destruction (56). p16INK4a, a marker of cellular senescence, is highly expressed in human OA 
cartilage (57), and chondrocytes with p16INK4a overexpression produce significantly higher MMP1 and MMP13 
levels compared with control chondrocytes (58). Bioinformatic analysis identified miR-24, which is significantly 
downregulated in OA cartilage, as a negative regulator of p16INK4a. Transfection of a miR-24 antagonist in vitro 
markedly increases p16INK4a and MMP1 secretion, indicating that miR-24 is protective against p16INK4a-induced 
senescence and cartilage catabolism (58). In addition to preventing senescence, miR-24 promotes cell prolifera-
tion and inhibits chondrocyte apoptosis in rats, possibly via regulating the proto-oncogene c-Myc and downregu-
lating MAPK signaling (59), activities that likely help in reducing OA pathogenic processes.

miRs involved in cartilage-destructive mechanisms
Chondrocyte maturation transcription factor–regulating miRs. miRs can promote cell differentiation and increase 
catabolic effector gene expression by targeting various transcription-regulating factors. For example, miR-139 
is increased in OA articular cartilage and inhibits cell proliferation and viability by suppressing expression 
of  eukaryotic translation initiation factor 4 G2 (EIF4G2) and insulin-like growth factor 1 receptor (IGF1R), 
which is involved in cell proliferation (60, 61). miR-381, involved in late chondrogenesis and endochondral 
ossification, is increased in various models of  cartilage degeneration and directly inhibits the expression of  
histone deacetylase 4 (HDAC4), a key regulator of  runt-related transcription factor 2 (RUNX2) and MMP13, 
promoting a catabolic chondrocyte phenotype (62, 63). Mechanical stress, which contributes to articular car-
tilage catabolic processes and disrupts cartilage homeostasis (64), regulates expression of  miR-365 via cyclical 
loading in vitro and in vivo (65). miR-365 is highly expressed in cartilage from primary OA patients and those 
with trauma-induced OA (65) and, like miR-381, directly inhibits HDAC4, promoting chondrocyte hypertro-
phy and catabolic enzyme expression (65, 66). A separate study showed that miR-365 is downregulated in OA 
cartilage, thus sparing cartilage from increased catabolic gene expression, in part, by sustaining expression of  
HIF-2α, another target gene of  miR-365 (67). These discrepancies in miR-365 detection in OA could result 
from OA cartilage donor age, disease stage, or control-tissue criteria, all of  which must be considered when 
interpreting results and selecting miR targets for therapeutic development.

Similarly to OA cartilage, miRs present in synovial fluid can help distinguish between early- and late-stage 
radiographic knee OA. miR-23a-3p is significantly increased in synovial fluid late-stage OA compared with 
early-stage OA, consistent with expression patterns in arthritic cartilage compared with normal tissue, and in 
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synovium explants treated with IL-1β compared with untreated explants (30, 68). miR-23a-3p overexpression 
in OA cartilage suppresses ECM synthesis by targeting SMAD3 (68). In contrast, IL-1β signaling inhibits 
miR-23a-3p expression in cartilage explants (30). Collectively, these studies indicate that a negative-feedback 
regulatory mechanism involving inflammatory signals could manage expression of  miR-23a-3p in OA.

miR-101 is increased in IL-1β–stimulated chondrocytes and mono-iodoacetate–induced (MIA-induced) 
OA models, and promotes OA progression, in part, by regulating expression of  type II collagen (Col2a1) 
and aggrecan by decreasing Sox9, the essential transcription factor for chondrocyte differentiation (69, 70). 
In vivo, miR-101 also induces cartilage degradation–related genes including Il6, Adamts1, Adamts5, and 
periostin (Postn) (70). Antisense-mediated inhibition of  miR-101 protects cartilage from MIA-induced deg-
radation in rats, highlighting the feasibility of  miR inhibitors as therapeutic options for OA (discussed fur-
ther below). miR-145, which also directly targets SOX9 (71), is increased in human OA chondrocytes and 
is further enhanced by IL-1β stimulation (72). Like miR-23a-3p, Smad3 is another direct target of  miR-145 
(72, 73). Thus, miRs target a number of  key transcription factors expressed as part of  OA molecular pathol-
ogy that modulate the chondrocyte phenotype and cartilage homeostasis towards a catabolic phenotype.

Apoptosis-regulating miRs. An accumulating body of  evidence suggests that chondrocyte apoptosis 
reduces cellularity and compromises ECM maintenance, leading to articular cartilage degradation and 
OA progression (74). Selected miRs are vital regulators of  this cell death process. miR-98 promotes chon-
drocyte apoptosis, as miR-98 silencing reduces chondrocyte apoptosis and inhibits cartilage degradation in 
rat models of  OA (75). Apoptosis-promoting effects of  miR-98 are, in part, mediated through regulation 
of  the antiapoptotic target gene B cell lymphoma 2 (Bcl-2) (76). Moreover, in vitro expression of  miR-139 
and miR-9 in chondrocytes reduces BCL2 and B cell lymphoma–extra large (BCLXL), promoting caspase 
3/7 activity–induced apoptosis (61). miR-9 expression is significantly downregulated in both human and 
rat knee OA cartilage compared with normal tissues, inversely correlates with its direct target NF-κB1, and 
indirectly targets IL-6 and MMP13 (77, 78). Thus, modulation of  miR-9 expression in OA may enhance 
chondrocyte proliferation and suppress apoptosis. miR-181a regulates OA pathogenesis by inducing 
chondrocyte apoptosis via downregulating glycerol-3-phosphate dehydrogenase 1–like protein (GPD1L) 
(79) and tumor suppressor PTEN (80). GDP1L regulates the hydroxylation of  HIF-1α, which is vital for 
chondrocyte homeostasis (81). In LPS-treated chondrocytes, miR-146a expression is increased and targets 
CXCR4, deactivating the PI3K/AKT and Wnt/β-catenin pathways, subsequently reducing chondrocyte 
viability, promoting apoptosis, and increasing expression of  inflammatory cytokines (82). Additional roles 
of  miR-146a in OA pathophysiology are discussed below.

miR-34a is a p53-targeted miR with apoptotic and antiproliferative effects in some human cancers (83, 
84). This miR is induced by IL-1β in rat chondrocytes and promotes apoptosis, induces iNOS expression, 
and decreases Col2a1 expression (85). miR-4262, which targets SIRT1, is increased in TNF-α–treated rat 
chondrocytes and promotes chondrocyte apoptosis and inhibits autophagy, contributing to OA pathogen-
esis (86). Loss of  matrix synthesis proteins and elevation of  matrix-degrading enzymes, such as MMP-13 
and ADAMTS-5, was also observed downstream of  miR-4262 (86).

In facet joint (FJ) cartilage, both miR-181a-5p and miR-4454 are upregulated. Moreover, expression 
of  these miRs positively correlated with FJ OA severity (87). This study showed that both miRs promote 
chondrocyte apoptosis, inflammation, and catabolic activity in FJ cartilage.

Autophagy-regulating miRs. In cartilage, age-related loss of  autophagy has been associated with cell 
death and cartilage degeneration, while adequate autophagy signaling is essential for maintaining cartilage 
homeostasis (88–90). A number of  miRs increased in OA pathology target autophagy-related genes, shift-
ing cartilage homeostasis towards catabolism. For instance, miR-155 is upregulated in human OA knee 
cartilage compared with normal cartilage, based on next-generation sequencing. Analysis revealed mul-
tiple putative autophagy-related miR-155 gene targets, including ATG3, GABA type A receptor–associated 
protein-like 1 (GABARAPL1), ATG5, ATG2B, lysosome-associated membrane protein 2 (LAMP2), and fork-
head box O3 (FOXO3) (35). In human chondrocytes, miR-155 mimic reduced mRNA and protein levels 
of  autophagy-related target genes, as well as other nonpredicted targets, including unc-51–like autophagy-
activating kinase 1 (ULK1), ATG14, and microtubule-associated protein 1 light chain 3 (MAP1LC3) (35), 
possibly through indirect mechanisms. miR-146a is also upregulated in OA cartilage and contributes to 
cartilage degeneration; however, in later disease stages, miR-146a is substantially downregulated compared 
with normal tissue (91–93). Aberrant miR-146a expression also contributes to pathogenesis of  systemic 
lupus erythematosus (SLE), psoriasis, and Sjögren’s syndrome, demonstrating its role in various rheumatic 
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diseases (94–96). Besides regulating chondrocyte apoptosis in response to mechanical injury, miR-146a 
promotes autophagy under hypoxic conditions (92, 97). HIF-1α induces miR-146a, leading to decreased 
expression of  the autophagy inhibitor BCL-2. Therefore, miR-146a likely promotes both cartilage destruc-
tion and autophagy-mediated chondrocyte homeostasis, depending on disease stage. mir-17-5p belongs to 
the oncogenic miR-17–92 cluster, which is essential for normal skeletal growth and embryonic develop-
ment (98). miR-17-5p decreases autophagy in OA chondrocytes by targeting the crucial autophagy regula-
tor p62 (also known as SQSTM-1) (99). Compared with normal tissue, miR-20 expression is elevated in 
human OA chondrocytes and suppresses autophagy partly through inhibition of  target gene ATG10 (100). 
miR-30b targets autophagy pathway regulators BECN1 and ATG5 (34), and overexpression of  this miR 
in TNF-α–treated chondrocytes suppresses autophagy and ECM gene expression while upregulating pro-
apoptotic genes. Inhibition of  one or combinations of  these miRs could protect against OA pathogenesis by 
promoting autophagy and associated homeostatic mechanisms in chondrocytes.

Synovial membrane contribution to joint pathology via miRs
Fibroblast-like synoviocytes (FLSs) respond to inflammatory mediators, including IL-1β, TNF-α, and ligands 
of  TLR2, TLR3, and TLR4, by modulating miR expression profiles (101). For example, miR-155 increases 
in response to proinflammatory stimuli and inhibits MMP3 and MMP1 expression, thereby suppressing FLS 
proliferation and invasion (102, 103). TNF-α–mediated NF-κB activation induces the miR-17–92 cluster, 
which includes miR-18a and miR-19b, in FLSs. miR-18a increases secretion of  MMP1 and inflammatory 
cytokines (104), whereas miR-19b increases basal cytokine production to exacerbate inflammatory activa-
tion of  FLSs (105). Elevated miR-203 levels also facilitate FLS activation by increasing NF-κB–mediated 
expression and secretion of  MMP1 and IL-6 (106). Thus, miR-18a, miR-19b, and miR-203 may contribute to 
FLS-mediated cartilage destruction and immune cell infiltration by aggravating the activated FLS phenotype.

The miR-29 family is highly expressed in human cartilage during end-stage OA and immediately after 
destabilization of  the medial meniscus (DMM) surgery in mice, highlighting its involvement in early dis-
ease and maintaining articular cartilage homeostasis (107). However, miR-29 expression is diminished in 
end-stage knee OA synovium and associates with synovial lining hypertrophy, inflammation, and fibrosis 
(108). Intra-articular miR-29a injection maintains synovial homeostasis by targeting VEGF and inhibiting 
OA-related angiogenesis. Interestingly, reduced miR-29 is also implicated in fibrogenesis of  systemic sclero-
sis, an autoimmune rheumatic disease (109). miR-125b-5p expression increases with OA severity (110), and 
miR-125b-5p overexpression inhibits OA synovial cell proliferation and promotes apoptosis by targeting 
synoviolin (SYVN1), suggesting miR-125b-5p upregulation is an attempt to attenuate synovial hyperplasia 
and fibrosis (110). Thus, miR-29 family miRs and miR-125b-5p expression may be part of  an effort to 
maintain normal synovial function rather than contribute to pathologic OA disease progression. miRs in 
FLSs also target other noninflammatory, noncatabolic pathways that contribute to homeostasis or promote 
pathological states (see Supplemental Tables 1 and 2).

Unique and overlapping targets of cartilage-protective and -destructive 
miRs
As detailed above, miRs can regulate both cartilage-protective and -destructive mechanisms, resulting in a 
complex signaling network. To allow investigation of  a broader biological relevance and therapeutic potential 
of  miRs in the maintenance of  articular cartilage homeostasis, we used an integrative computational biology 
approach to identify unique and overlapping gene targets, and signaling pathways of  miRs that have been 
reported to mediate cartilage-protective and -destructive mechanisms (Supplemental Tables 1 and 2).

First, we used mirDIP (http://ophid.utoronto.ca/mirDIP) ver. 4.1.6.6 to identify gene targets for 
selected miRs (111). To increase the quality of  predicted targets, we focused only on predictions with very 
high support (top 1%), resulting in some miRs not having any targets. Second, NAViGaTOR (http://
ophid.utoronto.ca/navigator) ver. 3.0.3 was used to further annotate, visualize, and prioritize identified 
gene targets (Figure 2) (112). This analysis identified both unique and overlapping targets, as well as genes 
regulated by many miRs exhibiting cartilage-protective or -destructive mechanisms. Interestingly, most of  
these prioritized targets (39 out of  47, see Figure 2) exhibit binding activity or transcription factor functions. 
Link protein N-terminal peptide (LPP) is predicted to be regulated by a high number of  both protective and 
destructive miRs. This glycoprotein strengthens the binding between aggrecan and hyaluronan (HA) and 
can function as a growth factor to stimulate synthesis of  type II collagen and proteoglycans in human artic-
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ular cartilage and intervertebral disc (113–115). Given the number of  LPP-targeting miRs, miR-mediated 
LPP regulation may substantially contribute to maintaining ECM integrity in OA. HA is synthesized by 
chondrocytes and is integral for articular cartilage structure and function; thus, modifications in size and 
concentration of  HA can affect cartilage homeostasis (116). Our prediction indicates that HA synthase 3 
(HAS3) is exclusively regulated by miRs exhibiting cartilage-protective mechanisms, suggesting that these 
miRs could play a role in modulating HA polymers in cartilage (117). Ring finger protein 34 (RNF34), 
also known as human ring finger homologous to inhibitor of  apoptosis protein type (hRFI), is among the 
predicted genes targeted by only those miRs that exhibit cartilage-destructive mechanisms. hRFI has not 

Figure 2. Unique and overlapping gene targets regulated by miRNAs involved in cartilage-protective and -destructive mechanisms. Considering protec-
tive and destructive miRNAs, we used mirDIP ver. 4.1.6.6 portal to identify high-confidence mRNA targets. The resulting network was further annotated 
with gene ontology (GO) molecular function in NAViGaTOR version 3.0.3. Edge color corresponds to specific or overlapping miRNA-gene relationships.
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been investigated in OA; however, it has antiapoptotic functions in various cancers (118, 119). Thus, select 
cartilage-destructive miRs may promote apoptosis by targeting RNF34. Most gene targets predicted by 
mirDIP have not been implicated or investigated in OA, apart from a select few. Owing to the vast number 
of  connected miRs, the putative targets highlighted in Figure 2 are potentially significant contributors to the 
pathogenesis of  OA. Third, we performed a comprehensive pathway enrichment analysis of  identified miR 
targets using pathDIP (http://ophid.utoronto.ca/pathDIP) ver. 3.0.27.2 (120). We used extended pathway 
associations that integrate core pathways with gene-pathway associations predicted using physical protein 
interactions from IID (http://ophid.utoronto.ca/iid) ver. 04-2018 (121).

A total of  2,224 pathways were significantly (P < 0.05; Bonferroni corrected for multiple testing) enriched 
for protective miR gene targets (including WNT pathways [n = 35; P < 2.36 × 10–6], TGF pathways [n = 28; 
P < 5.05 × 10–8], epidermal growth factor receptor [ERBB] pathways [n = 24; P < 3.17 × 10–4], and TNF 
pathways [n = 18; P < 1.78 × 10–3]). Active EGFR signaling maintains structural, functional, and mechanical 
properties of  articular cartilage (122). Reduced EGFR signaling dramatically accelerates cartilage degenera-
tion and OA progression in mouse models (122, 123). Term enrichment analysis of  significantly enriched OA-
associated pathways identified cancer, MAPK, and WNT as the most frequent terms. Extracellular stimuli, 
including proinflammatory cytokines, transduce signals into the nucleus, in part through MAPK signaling, 
activating genes that promote cellular development, proliferation, and apoptosis (124). MAPK signaling is 
required for chondrogenic regulation and cartilage development (125, 126) but can also negatively regulate 
articular chondrocyte stability by mediating catabolic responses to inflammatory cytokines. In fact, p38 
MAPK signaling promotes OA chondrocyte apoptosis in response to proinflammatory stimuli (127).

A total of  2,169 pathways were significantly enriched for destructive miR targets (including WNT 
pathways [n = 36; P < 1.39 × 10–2], TGF pathways [n = 28; P < 5.55 × 10–10], and ERBB pathways [n = 24; 
P < 1.96 × 10–2]). Term enrichment analysis of  OA-destructive miR targets revealed a high frequency of  
the terms MAPK, cancer, WNT, and regulation. The TGF-β pathway is a key signaling pathway in OA, is 
necessary for normal cartilage development (128), and serves both protective and destructive roles in the 
synovial joint (129–132). Similarly, pathway enrichment analysis predicts TGF-β signaling to be influenced 
by both protective and destructive miRs. WNT signaling is also among the pathways enriched in both 
protective and destructive miR targets, supporting previous findings that propose cartilage homeostasis 
depends on fine-tuning of  WNT signaling and not binary activation or suppression (133).

miRs as biomarkers
As they are stable, highly sensitive, and easy to detect, miRs can be valuable OA biomarkers. Extracellular 
miRs in plasma, serum, or urine could be used to noninvasively diagnose or prognosticate OA severity. miRs 
in OA synovial fluid are similar to those secreted by synovial tissues, suggesting that these miRs potentially 
originate from synovial membrane tissue; however, there is no correlation between plasma and synovial fluid 
miRs (134). An initial screen of  752 miRs in synovial fluid from patients with early- and late-stage radio-
graphic knee OA identified a panel of  miRs capable of  differentiating knee OA stage (30). miR-378-5p was 
detectable in late-stage OA synovial fluid but largely undetectable in early-stage OA synovial fluid, thereby 
providing a distinct synovial fluid miR signature with potential to predict early- from late-stage radiographic 
knee OA. Interestingly, increased serum miR-378 is being investigated as a biomarker for renal cell carcinoma 
and gastric cancer, demonstrating multiple diagnostic potentials of  miR-378 in different biofluids (135, 136).

While miR-132 has diagnostic potential to differentiate healthy controls from patients with OA or rheuma-
toid arthritis (RA), it does not differentiate RA and OA patients. In contrast, miR-16, miR-146a, miR-155, and 
miR-223 are enriched in RA synovial fluid compared with OA synovial fluid, and can differentiate between 
patient cohorts, supporting miRs in synovial fluid as biomarkers of specific arthropathies compared with those 
in plasma (134). However, plasma miR expression profiles in patients with early-to-intermediate radiologic knee 
OA compared with healthy controls identified 12 of 380 analyzed miRs as highly expressed in OA that could 
clearly differentiate OA individuals from healthy controls (31). As discussed above, miR-181a-5p and miR-4454 
positively correlate with the degree of facet cartilage destruction (87); however, detection of these miRs in blood 
and a correlation with cartilage tissue levels is required for future use as noninvasive biomarkers.

In a large prospective population-based study, 12 (miR-122, -25, - 28-3p, -93, -140, -191, -342-3p, -146b, 
-454, -885-5p, let-7b, and let-7e) of  377 analyzed miRs were differentially detected in serum of  OA patients 
(29). Further validation revealed that circulating let-7e levels inversely associate with the severity of  knee 
or hip OA. Serum levels of  miR-454 and miR-885-5p also differentiate between individuals receiving joint 
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arthroplasty and healthy controls; however, these associations are not consistently significant. Thus, spe-
cific miRs, such as let-7e, and to a lesser extent miR-454 and miR-885-5p, have potential to predict severe 
knee and hip OA (29). These miRs have not been investigated for early OA detection.

A recent screen of  2,549 miRs revealed that miR-140-3p, miR-671-3p, and miR-33b-3p are downregu-
lated in the serum of OA patients compared with healthy individuals, with miR-140-3p and miR-671-3p also 
downregulated in OA articular cartilage compared with healthy cartilage (137). These results complement 
previous studies showing reduced miR-140 in OA cartilage and knee synovial fluid (26, 43, 44, 138). Target 
gene analysis revealed that these miRs are involved in regulating metabolic processes, such as lipid and cho-
lesterol metabolism, that could affect OA progression (139). Larger, independent cohorts with diverse demo-
graphic and anthropometric characteristics are needed to validate these miRs as reliable biomarkers.

There is a great need for reliable biomarkers to detect early OA, as symptoms only begin to surface after 
cartilage is degraded past the point of  intrinsic repair. While differences in miR expression profiles are evi-
dent between mouse models of  posttraumatic OA and inflammatory arthritis, dysregulation of  serum miRs 
between mouse models of  arthritis and controls at early stages of  disease are not detectable, suggesting circu-
lating miRs may not be useful predictors of  early cartilage degeneration. However, miRs in cartilage correlate 
with early disease. For example, miR-146 is highly expressed in low-grade OA cartilage and decreases with 
increasing cartilage degeneration, suggesting miR-146 could be an early OA indicator (140). miR-146 is also 
markedly downregulated in cartilage obtained from patients undergoing total knee replacements (end-stage 
OA) compared with normal cartilage (27). Furthermore, miR-29–family expression increases immediately 
upon surgical induction in a murine cartilage injury model (107). Thus, changes in miR-29–family expression 
appear to correlate with OA onset, while miR-146 may indicate severity. Overall, serum miRs in OA are not 
yet a reliable tool for detecting early stages of  cartilage damage but can be predictive of  OA progression.

Kung et al. recently profiled early OA mouse cartilage and subchondral bone miR expression to gain 
further insight into potential regulators of  OA initiation (141) and discovered 139 mouse cartilage–spe-
cific miRs dysregulated early (1 and 6 weeks) after DMM surgery. Bioinformatic analysis revealed that 
OA pathology–associated miR-mRNA target interactions overlap with previously identified dysregulated 
human miRs, suggesting that these miRs (miR-15/16-5p, miR-26b-5p, miR-30c-5p, miR-98-5p, miR-149-
5p, miR-210-3p, and miR-342-3p) associate with both OA initiation and progression. A similar study was 
conducted in an attempt to identify dysregulated synovial tissue miRs in early OA; however, no differential 
miR expression was observed between DMM and control mice (142).

miR mimics and antisense inhibitors as therapeutic agents
Early therapeutic intervention is crucial to improve OA patient outcomes. Reliable and accurate miR 
biomarkers for OA will be valuable for early diagnosis; however, specific miRs for disease progression 
monitoring, determination of  treatment responses, or therapeutic targeting are also of  interest. Several 
miR antagonists and replacement therapies are being studied preclinically and in clinical trials (143). The 
miR-122–specific inhibitor miravirsen showed promising results in a completed phase IIa clinical trial of  
patients with chronic hepatitis C (ClinicalTrials.gov Identifier NCT01200420). The miR-34 mimic MRX34 
reduces cell proliferation in multiple cancers and inhibits the formation of  cancer stem cells in preclinical 
studies (144–146). In 2013, MRX34 was the first miR mimic to enter clinical trials; however, the phase 1 
study was halted in September of  2016 due to multiple immune-related severe adverse events (ClinicalTri-
als.gov Identifier NCT01829971). Miragen Therapeutics has miR antagonist antimiR-155 and miR mimic 
promiR-29b in clinical trials to treat cutaneous T cell lymphoma and fibrosis, respectively (ClinicalTrials.
gov Identifier NCT02580552 and NCT02603224). Interestingly, miR-155 is upregulated in OA chondro-
cytes and contributes to autophagy dysfunction and OA pathogenesis; however, in vitro inhibition of  miR-
155 is chondroprotective by enhancing autophagy (35). One advantage of  miR therapeutics for treating 
OA is the ability to locally deliver treatment via intra-articular injection. The encapsulated and isolated 
structure of  a synovial joint allows for fewer off-target effects and adverse events that can result from sys-
temic exposure (as seen with MRX34), where miR expression and function may differ from pathological or 
homeostatic roles in the joint. miR-targeted therapy appears to be a promising therapeutic avenue; however, 
off-target effects are possible due to multiple gene targets of  miRs (direct or indirect).

In preclinical and clinical studies, mesenchymal stem/stromal cells (MSCs) can protect and repair 
articular cartilage (147–161), and the MSC secretome, by way of  exosomes, has been shown to possess 
paracrine factors required to mediate tissue repair (162–165). In accordance with these findings, injec-
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tion of  MSC-derived exosomes on a weekly basis repairs osteochondral defects in a rat model (166). The 
cartilage regenerative effects of  embryonic stem cell–derived (ESC-derived) MSC exosomes were also 
investigated in a DMM-induced mouse OA model (167). Intra-articular injection of  ESC-derived MSC 
exosomes twice a week for 4 weeks prevented cartilage destruction, increased type II collagen, and reduced 
ADAMTS5 expression. This approach represents a cell-free, lipid-based, safer therapeutic approach for 
administration of  disease-modifying factors and eliminates challenges of  cell-based MSC therapies. Of  
particular relevance, Chen et al. showed that besides proteins and lipids, biologically functional pre-miRs 
are enriched in secreted exosomes and can exert their functions after being readily taken up by cells (168). 
Experiments in which argonaut-2 (Ago2), a regulator of  the biological function of  miRs, is knocked down 
showed that miR composition mediates the neuroprotective effect of  exosomes for treatment of  degen-
erative ocular disease (169). Tao et al. showed that overexpressed miR-140-5p in synovial MSC exosomes 
promotes chondrocyte proliferation and migration, thereby delaying progression in an OA rat model (170). 
Thus, it is possible to manipulate the miR content in exosomes to modulate miR expression in the joint and 
restore joint homeostasis. While further characterization of  MSC-exosome miRs is required, these studies 
show a potential application of  MSC-exosome miRs — with or without miR modification — for OA treat-
ment. Additionally, synthetic lipid–based vesicles resembling exosomes could be generated with a subset 
of  miR mimics and antisense inhibitors to mediate OA disease modification (171). Thus, exosomes could 
serve as a delivery tool for OA-modulating miRs.

Conclusions
Research of  OA-associated miRs is still in its infancy and further work is required before translation to 
clinical application. Research advances in various fields highlight the potential of  miRs as indicators of  dis-
ease activity and therapeutic targets, with preclinical animal models of  OA producing encouraging results. 
miRs are not purely tissue specific and many remain to be identified. This further emphasizes the need 
for unbiased, comprehensive, sequencing-based assays combined with systematic computational analysis 
to identify OA miRs for diagnosis, prognosis, and treatment. Of  note, some miRs that actively maintain 
articular cartilage homeostasis (protection or destruction) may operate through common gene targets and 
signaling pathways, as identified by our integrated computational analysis. Such comprehensive analysis 
may open up new therapeutic avenues for targeting multiple miRs by modulating common downstream 
gene targets or signaling pathways. These data also suggest that targeting miRs for therapeutic benefit may 
pose significant challenges, as miRs operate through multiple gene targets and signaling pathways.
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