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Introduction
The recent decade has witnessed the advent and significant advancement of  immunotherapy as an effective 
anticancer strategy. Its demonstrated efficacy against multiple cancer types has attracted more attention to 
predict the outcomes of  various immunotherapies alone or in combination with other therapeutic modal-
ities. One of  the most promising approaches for activation of  immune responses is immune checkpoint 
blockade therapy, such as using anti-CTLA4 and anti–PD-1 to block inhibitory molecules on immune cells 
to unleash antitumor immunity. Moreover, recent studies have begun shedding light on the role of  IFN-γ 
pathway genes on immune checkpoint blockade therapy, demonstrating the effective antitumor immune 
response induced by IFN-γ when it recognizes its cognate receptor on cancer cells or antigen-presenting 
cells (1, 2). Another immunotherapy approach gaining more interest is targeting neoantigens or cancer 
testis antigens (CTAs), whose expressions are cancer cell specific. Both therapeutic vaccines as well as T 
cell receptor–redirected adoptive cell transfer therapy have been demonstrated to boost T cell responses 
against tumors expressing these antigenic targets. Several such treatments have entered clinical trials (3–5). 
However, many of  these monotherapies are effective in only a fraction of  patients. Although studies have 
illustrated the intertumor heterogeneity (between patients) of  immune signatures (6, 7), as well as intratu-
mor heterogeneity (within the tumor) of  immune cells, in multiple cancer types (8–10), it remains elusive 
how the underlying intratumor heterogeneity of  immune response–related gene expression in tumor cells 
will affect responses and ability to predict outcome. In the current study, we demonstrate that single-cell 
RNA-Seq (scRNA-Seq) of  tumor cells can be used to identify such intratumor heterogeneity.

Immunotherapy has emerged as a promising approach to treat cancer. However, partial responses 
across multiple clinical trials support the significance of characterizing intertumor and intratumor 
heterogeneity to achieve better clinical results and as potential tools in selecting patients for 
different types of cancer immunotherapies. Yet, the type of heterogeneity that informs clinical 
outcome and patient selection has not been fully explored. In particular, the lack of characterization 
of immune response–related genes in cancer cells hinders the further development of metrics 
to select and optimize immunotherapy. Therefore, we analyzed single-cell RNA-Seq data from 
lung adenocarcinoma patients and cell lines to characterize the intratumor heterogeneity of 
immune response–related genes and demonstrated their potential impact on the efficacy of 
immunotherapy. We discovered that IFN-γ signaling pathway genes are heterogeneously expressed 
and coregulated with other genes in single cancer cells, including MHC class II (MHCII) genes. The 
downregulation of genes in IFN-γ signaling pathways in cell lines corresponds to an acquired 
resistance phenotype. Moreover, analysis of 2 groups of tumor-restricted antigens, namely 
neoantigens and cancer testis antigens, revealed heterogeneity in their expression in single cells. 
These analyses provide a rationale for applying multiantigen combinatorial therapies to prevent 
tumor escape and establish a basis for future development of prognostic metrics based on 
intratumor heterogeneity.
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Lung cancer is one of  the most highly mutated cancer types (11), and despite the improved success of  
immunotherapies in lung cancer, a low response rate (≤20%) is still observed (12). Herein, we used previ-
ously published scRNA-Seq data from lung adenocarcinoma (LUAD) patient-derived xenografts (PDXs) 
and 2 LUAD cell lines, LC2/ad-R (vandetanib resistant) and LC2/ad (vandetanib susceptible), as a test 
set to demonstrate the functional intratumor heterogeneity of  immune response–related genes that might 
affect immunotherapy responses (13–15). We found that MHCII genes are heterogeneously expressed among 
tumor cells obtained from LUAD patients and that their expression correlates with a favorable progno-
sis. Interestingly, MHCII genes are heterogeneously expressed within single cells from individual patients. 
MHCII genes can be induced by IFN-γ (16). We then sought to identify the intratumor heterogeneity of  
the IFN-γ signaling pathway and observed coexpression of  IFN-γ signaling pathway genes in a fraction of  
LUAD single cells that had a higher level of  MHCII expression. Similar results were found to be enriched in 
the LC2/ad cell line. Further analysis showed that the opposite trend, where uncoordinated expression of  
IFN-γ signaling pathway genes was associated with a lower level of  MHCII expression, was enriched in the 
LC2/ad-R cell line that acquired a vandetanib resistance phenotype. This relationship between IFN-γ signal-
ing pathway genes and MHCII genes could also be important in determining resistance to immunotherapy 
in LUAD. We also uncovered heterogeneity in the expression of  predicted cancer neoantigens and CTAs in 
single cells from both LUAD patients and cell lines. Interestingly, the decrease in the number of  neoantigens 
was also correlated with the acquired resistance phenotype. Our study suggests that using a combinatorial 
strategy to target multiple tumor antigens in select patients could improve immunotherapy efficacy.

Results
Prognostic prediction of  LUAD by the expression pattern of  cell cycle and MHCII genes. Identifying patients at 
higher risk of  tumor progression or recurrence is crucial for making individualized treatment plans. Despite 
recently recognized intratumor heterogeneity, there is a lack of  understanding of  how this is associated 
with prognosis. In this study, we aimed to characterize the heterogeneity of  prognostic predictors in single 
cancer cells. We first identified pathways that are potential prognostic predictors in LUAD cohorts from 
The Cancer Genome Atlas Research Network (TCGA) (Supplemental Table 1; supplemental material 
available online with this article; https://doi.org/10.1172/jci.insight.121387DS1). We found that the top 
pathways associated with an unfavorable prognosis were enriched for cell cycle–related pathways, while the 
top pathways associated with a favorable prognosis were enriched for immune cell signaling–related path-
ways (Figure 1A and Supplemental Table 1). Interestingly, the common genes shared by the top favorable 
prognostic pathways were MHCII genes. Further survival analysis validated the association of  upregulated 
MHCII genes with a better overall survival rate (Figure 1B and Supplemental Table 2). Surprisingly, MHCI 
genes did not have a significant association with overall survival in LUAD (Supplemental Table 2). Com-
pared with the expression of  MHC genes in normal tissues, MHCII genes were more downregulated com-
pared with those of  MHCI (Figure 1C). Previously, it has been shown that higher MHCII expression was 
also associated with better prognosis in multiple other tumor types, such as melanoma and triple-negative 
breast cancer (17, 18). Especially in melanoma patients, the expression of  MHCII can predict response to 
anti–PD-1/anti–PD-L1 therapy (18).

Single cancer cells express distinct prognosis-associated gene modules. Next, we assessed the expression level of  
prognosis-associated genes, discovered from analyzing bulk cancer sample RNA-Seq data, in LUAD patients 
at the single-cell level (Supplemental Table 2). We reanalyzed previously reported scRNA-Seq data from 
LUAD PDXs (14, 15). The LC-PT-45 tumor was taken from a treatment-naive, 60-year-old, male patient with 
an irregular primary lung lesion, whereas the LC-MBT-15 tumor was taken from a 57-year-old female with 
a metachronous brain metastasis after standard chemotherapy and erlotinib treatment. A total of  77 and 49 
single cells were sequenced for LC-PT-45 and LC-MBT-15, respectively. An average of  5 million reads were 
sequenced for each single cell, which is needed to saturate the mutation detection (Supplemental Figure 1A). 
Additional quality control was performed to remove low-quality single cells, which account for a small per-
centage, based on sequencing metrics, including genome mapping percentage, multimapped read percentage, 
mitochondrial DNA mapping percentage, cell-to-mean correlation, and transcriptome variance (Supplemen-
tal Figure 1B), following a published method (19). High-quality single cells were used in following analyses.

Min et al. previously reported the distinct subpopulations of  LUAD single cells with respect to the 
expression of  cell cycle genes (15). Here, we further sought to determine whether prognosis-associated 
genes and pathways, including cell cycle genes and antigen-presenting pathway genes, are heterogeneously 
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expressed in single LUAD cells and whether there are any expression patterns among these genes. We 
applied a self-organizing map (SOM), which adopts an unsupervised machine learning approach to map 
genes into coordinately expressed groups (metagenes) (20). A second-level SOM was then processed by 
mapping all samples together into a 2-dimensional mosaic pattern based on metagene expression. K-means 
clustering grouped metagenes into 6 clusters based on coexpression in scRNA-Seq from the LC-PT-45 
patient (Figure 2A). Gene set enrichment analysis of  genes in these 6 clusters showed that cluster A was 
enriched in cell cycle genes, while cluster B was enriched for antigen presentation pathways, specifically 
MHCII presentation (Figure 2A and Supplemental Table 3). We then observed that cells were separated 
into 3 groups based on their distinct metagene expression patterns: (noted as I) cell cycle pathway high, 
(noted as II) antigen presentation pathway high, and (noted as III) both pathways low (Figure 2B). We 
also analyzed the PDX tumor cells from the other LUAD patient (LC-MBT-15). As previously reported, 
LC-MBT-15 exhibits a less heterogeneous transcriptional profile (14). Nevertheless, SOM analysis revealed 
that metagenes representing cell cycle and MHCII genes were mapped into different metagene modules 
(Supplemental Figure 2 and Supplemental Table 3).

We further applied the above analysis to scRNA-Seq data from 2 human LUAD cell lines, LC2/ad-R 
and LC2/ad. LC2/ad-R is a subclone of  LC2/ad that has acquired resistance to vandetanib (13). Similar to 
LUAD patient samples, metagenes representing cell cycle and MHCII genes were also mapped into differ-
ent metagene modules in the 2 cell lines’ data (Figure 2C and Supplemental Table 3). Additionally, single 
cells from the 2 cell lines were also separated into 3 groups: (noted as I) cell cycle pathway high, (noted as 
II) antigen presentation pathway high, and (noted as III) both pathways low (Figure 2D). We noticed that 
more single cells from the LC2/ad cell line belonged to group II (51 out of  89) compared with single cells 
from the LC2/ad-R cell line (1 out of  70) (P < 10–5, Fisher’s exact test), which suggests that a significant 
downregulation of  antigen presentation pathway in the LC2/ad-R cell line could render this cell line resis-
tant to immunotherapy in addition to vandetanib.

Heterogeneity of  IFN-γ–stimulated genes in single cells. Because it is known that MHCII genes, a class of  
genes in the antigen presentation pathway, can be regulated through the IFN-γ signaling pathway (16) and 
we showed that antigen presentation pathway genes are heterogeneously expressed by LUAD cells, we next 
examined the expression pattern of  IFN-γ signaling pathway genes. Recent works also began to uncover the 
role of  the IFN-γ signaling pathway on cancer immune checkpoint blockade therapies. Gao et al. identified 
the genomic variations, such as copy number variations and single nucleotide polymorphisms, of  IFN-γ 
pathway genes in melanoma patients as a resistance mechanism to anti-CTLA4 therapy (1). By contrast, 
Benci et al. suggested an IFN-driven, PD-L1-independent resistance to immune checkpoint blockade (21). 
These different conclusions on the roles that the IFN-γ signaling pathway plays in cancer resistance to 
immunotherapy could be due to distinct clinical trial cohorts as well as the underlying intratumor hetero-
geneity of  IFN-γ signaling pathway genes. However, it is not known whether this cancer-immunity inter-
action network exhibits differential gene expression at the single-cell level, which could be an important 
prognostic factor and shed light on the mechanism of  cancer immune resistance.

Here, we used the LUAD PDXs and cell line scRNA-Seq data sets to examine the intratumor heteroge-
neity of the IFN-γ signaling pathway. IFN-γ signaling pathway genes were curated from the Gene Ontology 
(GO) database and Reactome pathway database. Single cells from LUAD patients were first clustered based on 
expression of MHCII genes into 2 groups: MHCIIlo and MHCIIhi (Figure 3A and Supplemental Figure 3A). The 
Gene Set Variation Analysis (GSVA) score of the IFN-γ signaling pathway, which indicates the extent of coor-
dinated expression among pathway genes, was then calculated for each individual cell. We found a significant 
decrease of IFN-γ signaling pathway GSVA scores in the MHCIIlo group (Figure 3B and Supplemental Figure 
3B). We also investigated expression of IFN-γ signaling pathway genes in LC2/ad-R and LC2/ad cell lines. 
GSVA showed that significantly more single cells in the LC2/ad-R cell line had downregulated IFN-γ signaling 
pathway genes compared with those in the LC2/ad cell line (Figure 3, C and D, and Supplemental Figure 4).

The different pattern we observed in the coordinated expression of  IFN-γ signaling pathway genes is con-
sistent with their role in directing antiproliferative and proapoptotic effects in tumor cells (2). However, their 
roles in activating MHCII expression, enhancing tumor antigen presentation, and inducing the recruitment 
of  other immune cells suggest that the lack of  coordinated expression of  IFN-γ signaling pathway genes in 
a subset of  cancer cells within a tumor would render these cells resistant to immunotherapy in addition to 
small-molecule inhibitors (22). Further studies are necessary to demonstrate how the heterogeneity of  IFN-γ 
signaling pathway expression influences the efficacy of  immunotherapy.
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Heterogeneous expression of  predicted cancer neoantigens in single cells. Neoantigens are a group of  prom-
ising targets to induce antitumor immunity through recognition of  neoantigen-specific T cells and are 
advantageous in their selective expression in cancer cells without the risk of  causing autoimmunity. It 
has been proposed that targeting multiple neoantigens simultaneously will likely be important to prevent 
tumor escape by editing of  the mutated epitope (5, 11). Here we aimed to analyze whether neoantigens are 
heterogeneously expressed. If  so, then this would warrant further investigation of  a new strategy in cancer 
immunotherapy where a combination of  neoantigens could be administered as therapeutic vaccines or a 
combination of  neoantigen-specific T cell receptors could be used to modify patients’ own T cells in adop-
tive cell transfer therapy. Consequently, the analysis of  the heterogeneity of  neoantigen expression in single 
cancer cells would facilitate the development of  these therapeutic regimens.

Figure 1. Cell cycle genes and MHCII genes are potential prognostic predictors of LUAD. (A) Gene set analysis of TCGA 
LUAD data to determine the significance of curated canonical pathways with respect to overall patient survival. Each dot 
represents the individual gene score within the corresponding pathway, and each red line is the score for the gene set cal-
culated from R package GSA. (B) Kaplan-Meier plot showing the 5-year overall survival with respect to HLA-DRA and HLA-
DMB expressions for patients in TCGA LUAD cohorts. Log-rank test was performed to determine significance. (C) Heatmap 
of the relative expression of MHC genes in tumor tissues compared with matched normal tissues for TCGA LUAD data.
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Figure 2. Expression of genes in the cell cycle pathway and antigen presentation pathway among single cancer cells are coregulated. (A and C) Gene 
pathway clusters from metagene analysis of single cells from PDX LC-PT-45 or from LC2/ad-R and LC2/ad cell lines. K-means clustering of metagenes 
on SOMs into 6 clusters and 8 clusters, respectively. A hypergeometric test was performed on each cluster of metagenes to determine enrichment of 
canonical pathways. (A) For PDX LC-PT-45, cluster A was enriched for cell cycle pathways, while cluster B was enriched for antigen presentation pathways. 
(C) For LC2/ad-R and LC2/ad cell lines, cluster G/H was enriched for cell cycle pathways, while cluster F was enriched for antigen presentation pathways. P 
values in the parentheses are FDR corrected. (B and D) Second-level clustering of SOMs for (B) 77 single cells from PDX LC-PT-45 or (D) 159 single cells from 
LC2/ad-R and LC2/ad cell lines. Each square is a unique SOM pattern with the heatmap indicating the gene expression level of metagenes. Cells with the 
same SOM are collapsed with only 1 representative SOM. SOMs are arranged by mapping all cells together into a 2-dimensional mosaic pattern based on 
metagene expression. Coexpression of cell cycle pathway and antigen presentation pathway further separates cells into 3 major groups: cell cycle pathway 
high (I), antigen presentation pathway high (II), and both pathways low (III).

https://doi.org/10.1172/jci.insight.121387


6insight.jci.org   https://doi.org/10.1172/jci.insight.121387

R E S E A R C H  A R T I C L E

To answer this question, somatic mutations in each single cell were further assessed for neoantigen pre-
diction (see Methods). Only neoantigens detected in more than 3 cells were selected. We found more than 
half  of  the neoantigens exhibited a bimodal expression (Figure 4A and Supplemental Figure 5), suggesting 
the possibility of  tumor escape with single neoantigen epitope–based therapy. Surprisingly, we not only 
found the same bimodal expression of  neoantigens in LC2/ad-R and LC2/ad cell lines but also revealed 
that LC2/ad-R cell lines had a significant decrease of  neoantigen load compared with the nonresistant 
parental cell line (Supplemental Figure 6, A and B). This suggested the degree of  neoantigen load might 
affect cancer cell drug responses. In addition to detecting neoantigens, we identified both wild-type alleles 
and variant-containing alleles (single nucleotide variants [SNVs] and insertions/deletions) for many genes 
in many single cells, indicating that cells without neoantigen identified did not mainly result from dropout 
of  corresponding genes (Supplemental Figure 7).

Figure 3. Coexpression of IFN-γ signaling pathway genes in LC-PT-45 and cell lines. (A) Heatmap of MHCII gene expression levels for single cells from PDX 
LC-PT-45. K-means clustering was performed to group all single cells into 2 clusters, MHCIIlo and MHCIIhi. (C) Heatmap of MHCII gene expression levels for single 
cells in LC2/ad-R and LC2/ad cell lines. LC2/ad-R or LC2/ad were used to label cells. (B and D) Comparison of GSVA scores of IFN-γ signaling pathway genes, 
calculated for each individual cell analyzed, between (B) MHCIIlo and MHCIIhi groups and (D) LC2/ad-R and LC2/ad groups. Nonparametric Wilcoxon’s test was 
performed between different groups. The box plots depict the minimum and maximum values (whiskers), the upper and lower quartiles, and the median. The 
length of the box represents the interquartile range.
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Heterogeneous expression of  CTAs in single cells. CTAs are a group of tumor antigens with normal expression 
restricted to male germ cells in the testis. In cancer, alteration of gene regulation results in aberrant expression 
of CTAs in various tumor types (23). Previous studies have demonstrated the extensive heterogeneity of CTAs 
among patients of different cancer types (6, 7). However, little is known about the heterogeneity of all possible 
CTAs expressed within each patient. Thus, we examined the expression of all possible CTAs in LUAD single 
cells and demonstrated the extensive heterogeneity of their expression at the single-cell level. To restrict our 
analysis to only CTAs expressed in tumors, we selected a subset of 276 known CTAs that are transcriptionally 
silent in normal nongermline tissues based on Genotype-Tissue Expression (GTEx) data (7). Only CTAs with 
normalized counts greater than 0 in more than 2 cells were selected. In both LUAD patients, we observed both 
substantial intertumor heterogeneity and intratumor heterogeneity of expressed CTAs (Figure 4B). In addition, 
compared with neoantigens, CTAs exhibited a lower expression level (Figure 4 and Supplemental Figure 5). 
Further analysis of CTAs in cell lines revealed that LC2/ad-R and LC2/ad cell lines can also be separated 
based on CTA expression. Expression of melanoma-associated antigen-A6 (MAGE-A6) and MAGE-A2 was 
significantly higher in LC2/ad-R compared with LC2/ad (Supplemental Figure 6C). These results suggest that 
CTAs could be therapeutic targets for cancers that are resistant to small-molecule inhibitor therapy.

Discussion
In this study, we applied both LUAD and cell line scRNA-Seq to characterize the intratumor heterogene-
ity of  immune response–related genes. We identified that (a) prognosis-related genes, especially cell cycle 
pathway and antigen presentation pathway genes, were independently coexpressed among single cells; (b) 
IFN-γ signaling pathways were heterogeneously expressed within cancer cells and downregulation was 
correlated to a drug-resistant phenotype; and (c) promising cancer vaccination targets, such as neoantigens 
and CTAs, were also heterogeneously expressed.

Previous studies showed that IFN-γ induced the expression of  MHCII genes in multiple myeloma cells 
(24) and normal epidermal melanocytes (25). Because MHCII expression on cancer cells is important for 
CD4+ T cell immunity as well as T cell exhaustion (26), our findings on the heterogeneity of  expression in 
cancer cells, especially its lost coordinated expression with IFN-γ signaling pathway genes in the LC2/ad-R 
cell line, could have important implications for cancer immunotherapy. Although it is yet to be determined 
whether cell cycle pathways and MHCII genes in tumor cells are mechanistically associated, recent findings 
that CDK4/6 inhibitors not only induce cell cycle arrest, but also promote antitumor immunity through 
activation of  IFN signaling and suppression of  Tregs, indicates a connection between these 2 gene modules 
(27). Besides, a recent study investigating resistance to immune checkpoint blockade in melanoma revealed a 
cancer resistance program, which is enriched for upregulation of  E2F targets and downregulation of  antigen 
presentation, is associated with T cell exclusion (28). Although it is known that IFN-γ can induce MHCII 
expression (16), the analysis of  immune response–related genes in single cancer cells revealed that genes of  
the IFN-γ signaling pathway are coexpressed, including many IFN-γ–stimulated genes in addition to MHCII. 
One of  the coexpressed IFN-γ–stimulated genes, IDO1, is responsible for the conversion of  tryptophan and 
other indole derivatives to kynurenine and has been widely studied as an important suppressor of  antitumor 
immunity. Several IDO inhibitors have entered clinical trials as monotherapies and in combination with 
CTLA-4 and PD-1 immune checkpoint blockade therapy (29). Our analysis also indicated that heterogeneity 
in IFN-γ signaling pathways might affect the responses of  IFN-γ pathway–directed therapies.

Another aspect of  intratumor heterogeneity unveiled by our analysis was in cancer vaccine targets, 
including neoantigens and CTAs. Many completed clinical trials have failed to observe significant respons-
es to CTA vaccines. For example, clinical trials in non–small cell lung carcinoma identified no signifi-
cant difference in MAGE-A3 compared with control groups (30). Yet another recent clinical trial study in 
melanoma patients reported 4 out of  6 patients had no recurrence after neoantigen vaccination (3). Our 
study further demonstrates the individuality and intratumor heterogeneity of  neoantigens and CTAs. The 
analysis of  heterogeneous expression of  neoantigens and CTAs together highlights the challenge of  cancer 
vaccine monoepitope therapy to elicit effective antitumor immunity and supports the possible advantages 
of  targeting multiple epitopes in neoantigen vaccine– or neoantigen-specific T cell–based immunotherapy.

In summary, we demonstrated that the intratumor heterogeneity of  immune module expression will help 
develop better prognoses of  immunotherapies. Examining the gene expression in single cancer cells not only 
provides a rationale for combinatorial immunotherapies, in particular neoantigen/CTA-directed therapies, 
but also paves the road for future analyses on how intratumor heterogeneity affects immunotherapy efficacy.
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Methods
Single-cell RNA-Seq data set. Raw reads of  scRNA-Seq and whole-exome sequencing were all download-
ed from the National Center for Biotechnology Information Gene Expression Omnibus DataSets web-
site under accession number GSE69405 (https://www.ncbi.nlm.nih.gov/geo). Two PDX samples were 
processed for scRNA-Seq, LC-PT-45 and LC-MBT-15 (14). Raw reads of  scRNA-Seq data from LC2/
ad-R and LC2/ad cell lines were downloaded from the DNA Data Bank of  Japan under accession num-
ber DRA001287. Raw reads of  scRNA-Seq were first mapped to human genome reference GRCh37 with 
RSEM (31) and then normalized using SCnorm (32). Genes with read counts fewer than 2 in more than 
10% of  all single cells were filtered out.

TCGA data set. Quantile normalized read counts of RNA-Seq from LUAD patients and corresponding clin-
ical data were downloaded from the Broad Institute TCGA Genome Data Analysis Center Firehose website 
(http://gdac.broadinstitute.org/). Aggregated somatic mutation data processed by MuTect2 was downloaded 
from National Cancer Institute Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/).

Prognostic gene and pathway analysis of  LUAD. Each gene in the TCGA data set was classified into “high 
expression” and “low expression” by comparison with its mean expression. Then “survival,” an R package, 
was used to calculate the Cox proportional hazards regression hazard ratio (HR) and P value of  the log-
rank test. R package “survminer” was used to plot Kaplan-Meier plots. The adjusted P value of  the log-rank 

Figure 4. Heterogeneous expression of neoantigens and CTAs in single cancer cells. (A) Heatmap showing the expression 
of neoantigens in single cells from LC-PT-45. Log2 normalized counts of 0 represent either no expression or no somatic 
mutation was detected. Cells were included if a neoantigen was detected regardless of its corresponding wild-type anti-
gen detection status. Only neoantigens detected in more than 3 cells were selected. (B) Heatmap showing the expression 
of CTAs in single cells from LC-PT-45 and LC-MBT-15. CTAs whose expressions were transcriptionally silent in normal 
nongermline tissues based on GTEx data and with normalized counts greater than 0 in more than 2 cells were selected.
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test was applied using false discovery rate (FDR) correction method. R package “GSA” was used to iden-
tify pathways that were potential prognosis predictors of  overall survival in LUAD patients (33). Curated 
canonical pathways were downloaded from Molecular Signatures Database version 6.1 (http://software.
broadinstitute.org/gsea/msigdb/index.jsp).

Somatic mutation detection. Mapping of  whole-exome sequencing reads and preprocessing of  mappable 
reads were processed as described previously (14). Then somatic mutations in both PDX samples were 
called using MuTect2 with default settings.

Somatic mutations of LC2/ad cell lines were curated from the Catalogue Of Somatic Mutations In Cancer 
database. Over 97% of somatic mutations were overlapping between LC2/ad-R and LC2/ad cell lines (13).

SOM analysis in scRNA-Seq. Prognostic genes with FDR less than 0.05 were selected, and genes with 
mean normalized counts less than 2 were filtered. Gene expression data were then log transformed, central-
ized, and clustered using SOMs. Genes were clustered onto a 12 × 12 grid or 15 × 15 grid for LUAD scRNA-
Seq and cell line scRNA-Seq, respectively. R package “oposSOM” was implemented for SOM processing 
and downstream analysis, including k-means clustering of  metagenes and the second-level SOM (20).

Supervised analysis of  IFN-γ signaling pathways in scRNA-Seq. IFN-γ signaling pathway genes were curated 
from the GO and Reactome pathway database, under GO:0034341 and R-HAS-877300.1, respectively. 
GSVA was used to calculate the sample-wise gene set enrichment score of  IFN-γ signaling pathways in 
each individual single cell (34). K-means clustering was used to group single cells into MHCIIlo and MHCIIhi 
groups based on MHCII gene expression. Nonparametric Wilcoxon’s test was used to perform significance 
testing of  GSVA scores between different groups. R package “pheatmap” was used to generate heatmaps.

Tumor-specific HLA typing and HLA-binding neoepitope prediction and expression in scRNA-Seq. Raw reads of  
whole-exome sequencing were processed with OptiType (35). Then VCF files of  each individual single cell 
generated by GATK HaplotypeCaller and MHC class I alleles (HLA-A, HLA-B, and HLA-C) predicted by 
OptiType were used to predict neoepitopes with topiary (https://github.com/hammerlab/topiary). Net-
MHCpan was selected in topiary as the MHC binding predictor. Cells were included if  a neoantigen was 
detected regardless of  its corresponding wild-type antigen detection status. Only genes that had predicted 
neoepitopes in more than 3 cells were examined for expression.

CTA expression in scRNA-Seq. CTA genes were selected as previously reported (7). Briefly, known CTAs 
with negligible expression in GTEx normal tissues (95th percentile value < 1 TPM in all somatic tissue 
types) were analyzed for scRNA-Seq data.

Statistics. All P values were FDR corrected, and FDR less than 0.05 was treated as significant.
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